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ABSTRACT 

 

In this paper, a displacement-constrained volume-minimizing topology optimization model 

is present for two-dimensional continuum problems. The new model is a generalization of 

the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in 

which the displacement is constrained in the loading point. In the original model the 

displacement constraint was formulated as an equality relation, which practically means that 

the number of “interesting points” may be exactly one. The recent model resolves this 

weakness replacing the equality constraint with an inequality constraint. From engineering 

point of view it is a very important result because we can replace the inequality constraint 

with a set of inequality constraints without any difficulty. The other very important fact, that 

the modified displacement-oriented model can be extended very easily to handle stress-

oriented relations, which will be demonstrated in the forthcoming paper. Naturally, the more 

general theoretical model needs more sophisticated numerical problem handling method. 

Therefore, we replaced the original “optimality-criteria-like” solution searching process with 

a standard nonlinear programming approach which is able to handle linear (nonlinear) 

objectives with linear (nonlinear) equality (inequality) constrains. The efficiency of the new 

approach is demonstrated by an example investigated by several authors. The presented 

example with reproducible numerical results as a benchmark problem may be used for 

testing the quality of exact and heuristic solution procedures to be developed in the future 

for displacement-constrained volume-minimization problems. 
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1. INTRODUCTION 
 

The topology optimization subjected to displacement constraints lead to a challenge from 

computational point of view. Already in 1993, Sankaranarayanan et al. [2] have been 

presented a pioneer work for truss topology optimization problems with displacement 

constraints. Compliance minimization has been popular for obtaining optimum truss 

topologies because it is computationally less demanding than optimization for more general 

constraints. This advantage of compliance minimization led to the approach of optimizing 

the topology of the truss for minimum compliance, and then sizing the cross-sectional areas 

of that truss for the actual constraints. This paper shows that the compliance minimization 

can occasionally lead to the wrong topology, and that the penalty associated with using the 

minimum-compliance topology can be substantial. To demonstrate this problem truss 

topology optimization subject to displacement and stress constraints is performed with a 

simultaneous analysis and design (SAND) procedure. 

Bendsøe and Ben-Tal [3] presented a displacement based method for maximum stiffness 

truss topology design where ground structure approach is used, and the problem is 

formulated in terms of displacements and bar areas. This large, non—convex optimization 

problem can be solved by identifying an equivalent, unconstrained and convex problem in 

the displacement which can be solved by a non—smooth, steepest algorithm. In this method 

an explicit solving of the equilibrium equations and the assembly of the global stiffness 

matrix is applied. A large number of examples have been studied, showing the attractive 

features of topology design as well as exposing interesting features of optimal topologies. 

In 1997, M. Kočvara [4] published a bilevel programming approach for topology 

optimization with displacement constraints. Minimum-compliance formulation of the truss 

topology problem with additional linear constraints on the displacements is considered. In 

the frame of bilevel programming approach the primal goal (upper-level) is to satisfy the 

displacement constraint as well as possible minimize the gap between the actual and 

prescribed displacement. Second goal (lower level) is to minimize the compliance still want 

to find the stiffest structure satisfying the displacement constraints. This approach leads to a 

nonsmooth optimization problem which is finally solved by a nonsmooth solver. 

In a recent paper, Yi and Sui [1] presented a displacement-constrained volume-

minimizing model in which the displacement was constrained in the loading point. The 

authors developed an “optimality-criteria-like” solution searching algorithm to generate the 

optimal solution. The applied algorithm exploits the fact that the displacement is constrained 

at only one “interesting point” which is by definition the loading point. Therefore the 

algorithm is very similar to the algorithm used to minimize the compliance with exactly one 

equality constraint which defines the allowed volume fraction. In the Yi and Sui [1] model, 

the displacement constraint is formulated by an equality relation, therefore the number of 

“interesting points” can be exactly one. 

Sui and Yi [5] presented earlier a discussion about choosing an objective function and 

constraint conditions in structural topology optimization. In order to solve a topology 

optimization model related to practical engineering problems a weight minimization with a 

displacement constraint is discussed. The authors developed a 120-line code, written in 

Matlab, based on some examples calculated using the 99-line code made by Sigmund [6]. 

An improvement of the previous paper has been suggested by Andreassen et al. [7] using the 
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99 line code presented by Sigmund [6] as a starting point. The original code has been 

extended by a density filter, and a considerable improvement in efficiency has been 

achieved. A speed improvement and moreover, the length of the code has been reduced to a 

mere 88 lines. 

In this paper, we present a more general model for topology optimization which resolves 

this weakness by replacing the equality constraint with a more appropriate inequality 

constraint. From engineering point of view this is a very important modification because we 

can replace the inequality constraint with a set of inequality constraints without any 

difficulty, and therefore the number of interesting points may be arbitrary. The applied 

model is presented in which displacement-constrained volume-minimizing topology 

optimization for a two-dimensional (2D) continuum problems is discussed. 

In this paper, we present a numerical example using a benchmark model and compare the 

given results with the those of the original approach. The comparison example is based on 

the Messerschmitt-Bölkow-Blohm (MBB) beam. The MBB-beam has the function of 

carrying the floor in the fuselage of an Airbus passenger carrier and became later a basic test 

example of the topology optimization (see e.g. in Olhoff et al. [8], Zhou and Rozvany [9]). 

In the remaining parts of this paper we describe our generalized model in Section 2. In 

Section 3 a numerical example is presented using the proposed model and the results are 

compared with the results of the original approach. Finally, some concluding remarks are 

presented in Section 4. 

 

 

2. MODEL 
 

Without loss of generality, we formulate the proposed new displacement-constrained 

volume-minimizing topology optimization model with only for two-dimensional (2D) 

continuum problems. The standard “academic” topology optimization problem of continuum 

structures can be described as follows: 

 

  minKUUx  c   (1) 

 
0V V x

 
(2) 

FKU 
 

(3) 

10  x  (4) 

 

where c  is the compliance, U  and F  are the global displacement and load vectors, 

respectively, K  is the global stiffness matrix, x  is the vector of design variables (the 

element densities),  xV  and 0V  are the material volume and design domain volume, 

respectively, and   is the pre-setting volume fraction. The 2D design domain is assumed to 

be rectangular and discretized by 
yx een       square elements with four nodes per element 

and two degrees of freedoms (DOFs) per node. Both nodes and elements are numbered 

column-wise from left to right, and the DOFs 12 i  and i2  correspond to the horizontal and 

vertical displacement of node  ni  , ,2 ,1  , respectively. The optimization problem (1-4) 

can be solved by, for example, the well-known and the most widely used optimality criteria 
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method or any other appropriate nonlinear solver (see, for example, Liu and Tovar [10]). 

Let u define the displacement value at the point of interest and u  its pre-setting maximum 

allowable value. The presented modified displacement-oriented “engineering” topology 

optimization problem of continuum structures can be formulated as follows: 

 

 
min

x
  

V

V


0

  (5) 

u    u   (6) 

FKU   (7) 

10  x  (8) 

 

where   is the material volume fraction, U and F  are the global displacement and load 

vectors, respectively, K is the global stiffness matrix, x  is the vector of design variables 

(the element densities), and relation u    u   is the displacement constraint in the point of 

interest. We have to note, that in the original Yi and Sui [1] model the displacement 

constraint was formulated as an equality relation, which practically means that the number 

of “interesting points” is exactly one. The modification resolves this weakness which from 

engineering point of view a very important result because we can replace the equality 

constraint with a set of inequality constraints: uu      . The other very important fact, that 

the modified displacement-oriented model can be extended very easily to handle stress-

oriented relations, which will be demonstrated in the forthcoming paper. Naturally, the more 

general theoretical model needs more sophisticated numerical method. Therefore, we have 

to replace the original “optimality-criteria-like” solution searching process with a standard 

nonlinear programming approach which is able to handle linear (nonlinear) objectives with 

linear (nonlinear) equality (inequality) constrains. For the numerical treatment of the 

example presented in Section 3 the Matlab fmincon solver was used. According to the 

original Yi and Sui paper [1], the displacement value  xuu  and its gradient x/ u  at 

the point of interest are defined in the function of the element densities x . 

 

 

3. EXAMPLE 
 

The MBB beam is a classical problem in topology optimization. In accordance with the 

original paper (Sigmund [6]), the MBB beam is used here as an example. The design 

domain, the boundary conditions, and the external load for the MBB beam are shown in Fig. 

1. In this example, our goal is the following: we try to find a volume-fraction-minimal 

material distribution which satisfies the displacement constraint at the point of interest with 

tolerance 0010. . According to the original Yi and Sui paper [1], the point of interest is 

taken as the loading point to give comparable results. The example, as shown in Fig. 1, is the 

half of MBB-beam where a unit load acting down in the left-top corner of the design 

domain. The ground structure consists of 1200  20  60      yx een  elements, the Young’s 

modulus is 10 E , the Poisson’s ratio is 30. , and the starting volume fraction, used in 

the original problem solving process, is 50.00  . The penalization power is 3p  and we 
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use sensitivity filtering with filter radius 5.1min r . 

 

 
Figure 1. The half design domain, boundary conditions, and external load for the optimization of 

the symmetric MBB beam 

 

The optimal design of the original and the enhanced approach are shown in Fig. 2-3. When 

we try to compare the two designs then our first impression is that these designs are practically 

the same. Fortunately, Table 1 may help to detect the real differences between the two designs. 

Easy to see, that the results of the more flexible enhanced approach are significantly better than 

the results given by the original approach. In Table 1, the weight of the structure which is 

denoted by w  is presented only to ensure a fair comparison between the two approaches 

because the original optimization problem was formulated as a weight-minimization problem. 

Naturally, in the presented example there is a trivial relation between the structure weight and 

volume therefore the result of the weight-minimization and the volume-minimization is the 

same. According to Table 1, in every case the 298203.u   setting was used to ensure the 

comparability requirement. 

The state-of-the-art Matlab fmincon solver, which was used to solve the enhanced 

problem, is able to handle linear (nonlinear) objectives with linear (nonlinear) equality 

(inequality) constrains where the nonlinear constraint can be defined as a standard Matlab 

function. In the solution searching process, as a searching tool, the nonlinear interior point 

solver was selected. It is gratefully acknowledge, that the nonlinear constraint handling function 

with straightforward extension to compute gradient x/ u  was given from the original FE 

(Finite Element analysis) Matlab function written by Yi and Sui [1]. 

 

  
Figure 2. Result of the original Sui-Yi model Figure 3. Result of the enhanced model 
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Table 1: Comparison of the results 

Model    w  u  u    

  Sui& iY  500.   600   296203.   298203.   0020.     

Csébfalvi  450.   540   297203.   298203.   0010.     

 

 

4. CONCLUSION 
 

In this paper, we present a displacement-constrained volume-minimizing topology 

optimization model for two-dimensional continuum problems. The new model is a 

generalization of the displacement-constrained volume-minimizing model developed by Yi 

and Sui [1] in which the displacement is constrained in the loading point. In the original 

model the displacement constraint was formulated as an equality relation, which practically 

means that the number of “interesting points” may be exactly one. The recent model 

resolves this weakness replacing the equality constraint with an inequality constraint. From 

engineering point of view it is a very important result because we can replace the inequality 

constraint with a set of inequality constraints without any difficulty. The other very 

important fact, that the modified displacement-oriented model can be extended very easily to 

handle stress-oriented relations, which will be demonstrated in the forthcoming paper. 

Naturally, the more general theoretical model needs more sophisticated numerical problem 

handling method. Therefore, we replaced the original “optimality-criteria-like” solution 

searching process with a standard nonlinear programming approach which is able to handle 

linear (nonlinear) objectives with linear (nonlinear) equality (inequality) constrains. The 

efficiency of the new approach is demonstrated by an example investigated by several 

authors. The presented example with reproducible numerical results as a benchmark problem 

may be used for testing the quality of exact and heuristic solution procedures to be 

developed in the future for displacement-constrained volume-minimization problems. 
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