
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  

Int. J. Optim. Civil Eng., 2017; 7(1):1-12 

 
 

 

TOPOLOGICAL OPTIMIZATION OF VIBRATING CONTINUUM 

STRUCTURES FOR OPTIMAL NATURAL EIGENFREQUENCY 
 
 

N. Yaghoobi and B. Hassani*, † 
Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 

 

ABSTRACT 
 

Keeping the eigenfrequencies of a structure away from the external excitation frequencies is 

one of the main goals in the design of vibrating structures in order to avoid risk of 

resonance. This paper is devoted to the topological design of freely vibrating continuum 

structures with the aim of maximizing the fundamental eigenfrequency. Since in the process 

of topology optimization some areas of domain can potentially be removed, it is quite 

possible to encounter the problem of localized modes. Hence, the modified Solid Isotropic 

Material with Penalization (SIMP) model is here used to avoid artificial modes in low 

density areas. As during the optimization process, the first natural frequency increases, it 

may become close to the second natural frequency. Due to lack of the usual differentiability 

of the multiple eigenfrequencies, their sensitivity are calculated by the mathematical 

perturbation analysis. The optimization problem is formulated by a variable bound 

formulation and it is solved by the Method of Moving Asymptotes (MMA). Two 

dimensional plane elasticity problems with different sets of boundary conditions and 

attachment of a concentrated nonstructural mass are considered. Numerical results show the 

validity and supremacy of this approach. 
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1. INTRODUCTION 
 

Topology optimization of continuum structures has a great impact in the field of the 

structural optimization. Application of topology optimization are shown in [1]. For structural 

topology optimization design several optimization approach such as the homogenization 

method [2, 3], the solid isotropic material with penalization (SIMP) [4, 5] and the 
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evolutionary structural optimization [6, 7] have been developed. In the homogenization 

method, microstructures are introduced to the material of the finite elements of the 

discretized domain and the parameters of these microstructures are treated as the design 

variables of the optimization problem. Alternatively, the SIMP model uses the material 

density of each element as the design variable. This can also be related to some geometrical 

parameters to create some sort of artificial microstructures [8]. 

Problems of vibration and noise control design are of a great importance in many 

engineering fields. In classical topology optimization stiffest structure is considered as the 

objective function. Structures with high first natural frequency tend also to be stiff [9]. Also, 

maximizing the fundamental or higher order frequency, can be offered to avoide resonance 

in problems [10]. However, the number of paper that deal with topology optimization of 

dynamic problem is limited. The first attempt at eigenvalue topology optimization dealt with 

the the reinforcement of given 2D structures was considered by Diaz and Kikuchi [11]. 

Tenek and Hagiwara [12] dealt with maximizing the eigenfrequencies of plates using the 

homogenization method and mathematical programming. The problem objective function is 

defined as scalar weighted sum of the first five eigenfrequencies; see [13-16]. 

Two main subjects arise from eigenvalue optimization. Artificial modes related to low 

density areas are one of the main problems in optimization frequencies or buckling loads 

[17, 18]. Several paper include a technique to remove artificial localized modes [7, 10, 18]. 

Second is the possibility of multiple eigenvalue problem. Such eigenvalues are not usual 

differentiable. Sensitivities calculation of repeated eigenvalues are available in [19, 20]. 

Ma et al. [14], and Jog [21] dealt with topology optimization for minimum dynamic 

compliance of continuum structure subjected to force vibration. In the paper of Alavi et al. 

[22], topoloical design of structures under transient loads are presented. Maximization of the 

gap between two adjacent frequencies have been considered in the papers [23, 24]. 

Topology optimization has also been applied to maximize natural frequency of two-

dimensional structures with an additional non-structural concentrated mass [25, 26]. 

The bound formulation which eases the proper treatment of multiple eigenvalues has 

been formulated in references [10, 23, 27, 28]. 

In this paper, we present topology optimization of fundamental eigenfrequency of two 

dimensional structures with a concentrated mass. Also possibility of multiple eigenfrequencies 

is taken into consideration and Sensitivity of them are computed by the results of the 

mathematical perturbation analysis approach [19]. Spurious modes related to subregions with 

low values of material density are captured by using the modified SIMP [10]. The topology 

optimization is formulated by a bound formulation and the problem of eigenvalue topology 

optimization is solved by the Method of Moving Asymptotes (MMA) [29]. 

 

 

2. MATERIAL INTERPOLATION SCHEME 
 

2.1 The SIMP model 

The purpose of the topology optimization process is to find the void-solid distribution of a 

given amount of material. By considering isotropy for the solid part of the structure, the 

element elasticity matrix eE  may be considered as 
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0( ) ,e e e ex xE E  min(0 1),ex x    (1) 

 

where ex and
0

eE are, respectively, the element material density and elasticity matrix of 

homogeneous solid. minx is a lower bound for ex . To prevent singularity minx is not zero. 

Although (1) yields a relaxed optimization algorithm, it results in some porous areas in the 

optimum structure [2]. It is more practical to achieve a solution which be composed of solid 

and void region. To attain this aim, it may be desirable to penalizing the intermediate values 

for ex . SIMP model [4, 5] can easily be provided by changing (1) to the form 

 
0( ) ,p

e e e ex xE E  (2) 

 

where p  is the penalization factor and is usually 3. Also the element mass matrix may be 

considered as 

 
0( ) ,q

e e e ex xM M  (3) 

 

where 0

eM  is the mass matrix corresponding to the element with fully solid material, and 

usually the 1q  . 

The global stiffness matrix and mass matrix can be expressed as 

 

0

1

,
n

p

e exK K  (4) 

0

1

,
n

q

e exM M  (5) 

 

wheren and 0

eK are respectively the number of elements and stiffness matrix corresponding 

to the element with fully solid material. 

 

2.2 The approach of removing localized modes 

In the present paper the eigenvalue optimization problem is not formulated as a reinforcement of 

an existing structure, so there is a problem associated with spurious localized modes in low 

density regions [18]. If 3p  and 1q  the SIMP model for eigenvalue topology optimization 

may cause artificial eigenmodes related to very small corresponding eigenfrequencies. Following 

Du and Olhof [10] we may replace (3) by the modified SIMP model 
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where the two coefficients 5

1 6 10c   and 6

2 5 10c     enforce the 
0C  and 

1C continuity 

at the value 0.1ex   of the element material density. By using the modified SIMP model as 

stated above, the outcome will be that the artificial localized modes are eliminated. The 

considered approach has applied in numerical examples in section 4. 

 

 

3. FORMULATION OF EIGENVALUE TOPOLOGY OPTIMIZATION 
 

3.1 General problem of optimization 

Supposing the damping term is dispensable, the dynamic behavior of continuum structure in 

the finite element can be written as 

 
2( ) 0,i i K M u  (7) 

 

where i  is 𝑖th natural frequency and iu is the corresponding eigenvector. 

The eigenvalue optimization problem can be considered as max-min formulation  

 

 1 2find , ,..., ,nx x xx  (8a) 

  2

1,...,
max  min ,i

i N



 (8b) 

2S.t.   , 1,..., ,i i i i N Ku Mu  (8c) 

, , , 1,..., ,T

i j ij i j i j N  u Mu  (8d) 

0

1

0,
n

e

e

x fV


   (8e) 

min ,  0 x x 1  (8f) 

 

In these equations, N is total number of degrees of freedom of the admissible design 

domain, f and 0V  are respectively the prescribed volume fraction and design domain 

volume, x denotes the vector of element material densities, minx represent a vector of lower 

bound for x (a non-zero vector to prevent singularity). 

 

3.2 Variable bound optimization 

In this paper we reformulate the min-max problem using bound formulation that has an 

advantage when we have multiple eigenfrequencies. This approach leads to much more 

considerable results than the usual scalar weighted sum of multiobjective problems [28]. In 

this formulation a scalar variable Z is taken simultaneously to be objective function and a 

variable lower limit for first and higher order eigenvalues (depend on possible multiplicity). 

Following Du and Olhof [10] and Svanberg [30] the optimization problem can be expressed as 
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 1 2find , ,..., ,nx x xx  (9a) 

max  ,Z  (9b) 
2S.t.    0, 1,2,..., 1,iZ i J     (9c) 

2 , 1,..., 1,i i i i J  Ku Mu  (9d) 

, , , 1,..., 1,T

i j ij i j i j J   u Mu  (9e) 

   Constraints :  ,8(e) 8(f )  (9f) 

 

In this equation we considered J to be the number of repeated frequencies 1 ... .J  

By using the scalar variable Z even if repeated eigenvalues are available, the optimization 

problem is differentiable if they are considered as problems in all variables [10, 28]. 

 

3.3 Sensitivity calculation of simple eigenvalue 

We here determine the sensitivity of the unimodal eigenvalue 2.i i   If we assume the 

eigenfrequency is simple, then the corresponding eigenvector will be unique. Therefore it is 

differentiable with respect to design variables. To calculate the sensitivity of unimodal 

eigenvalue we differentiate (8c) with respect to ex , and achieve 
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Premultiplying by T

iu and applying the equation (7) and the normalization equation (8d), 

yields [19] 
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The derivative of K and M  matrices can be computed from equations (4) and (6), i.e. 
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Consequently, the sensitivity of 𝑖’th natural frequency with respect to particular design 

variable ex becomes 
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3.4 Sensitivity calculation of multiple eigenvalues 

During the maximization, the first eigenfrequency may become close with its adjacent 

eigenfrequency, which is mentioned to multiple eigenvalues. The eigenvectors of the 

multiple eigenvalues are not unique. Any linear combination of eigenvectors is also an 

eigenvector and will satisfy Equation (7). The new sensitivity formulation is based on the 

result of the mathematical perturbation analysis of the repeated eigenfrequency and the 

corresponding eigenvectors [19]. Following Seyranian et al. [19] the sensitivities of the 

multiple eigenvalue with respect to changes of a single design parameter ex can be 

considered as the eigenvalues of a J-dimensional subeigenvalue problem as 

 

det[ ( ) ] 0, , 1,..., , 1,..., ,T

s k sk

e e

s k J e n
x x

 
 

    
 

K M
u u  (15) 

 

where as in the unimodal case, the derivative of K and M  matrices can be expressed by 

Equations (12) and (13), respectively. 

 

3.5 Method of solution 

In order to solve the eigenvalue topology optimization several approaches such as optimality 

criteria (OC) method [14], the method of moving asymptotes (MMA) [29], mathematical 

programming (MP) [31] and less mathematically rigoros approaches such as evolutionary 

method [32] can be used. In the present paper to solve variable bound optimization of 

eigenvalue problem we use MMA [29] which has been proven to be amongst the most 

effective methods [33]. Also, MMA is a mathematical gradient base approach, it is well 

matched with the large number of topology and shape design variables [34]. 

 

 

4. SUMMARY OF OPTIMIZATION PROCEDURE 
 

The proposed iterative procedure is illustrated in a flowchart of Fig. 1. The bound variable 

formulation of eigenvalue topology optimization has been coded in the MATLAB software. 

Checherboard and mesh-dependency problems usually arise in topology optimization 

problem. To prevent these problems, we have used the mesh-independent filter as described 

in [5] by weighted averaging of sensitivities over the neighbouring elements (see e.g. 

Hassani and Hinton [35]). The algorithm repeats until the maximum of absolute relative 

change in design variables or objective function in two adjacent iteration is less than a 

prescribed value. 
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5. NUMERICAL EXAMPLES 
 

In this section two illustrative examples is presented which shows efficiency of the proposed 

method. All of the examples are modeled by four-node plane stress elements. 

 

 
Figure 1. Flowchart of the proposed optimization algorithm 

 

5.1 A rectangle clamped beam 

As a first example, a rectangle beam with clamped ends, as shown in Fig. 2, is considered. A 

non-structural lumped mass posed on the four elements in the center of design domain. The 
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geometrical and physical properties of the system are given in Table 1. The first natural 

frequency of design domain with fully solid material is 
1

154  rad/s. The objective is to 

find topological design of structure for maximum fundamental frequency with 50.29% 

material of the design domain. The optimal design is shown in Fig. 3a. Fig. 3b shows the 

result in Zhao et.al [26]. The first frequency of optimal design in the present study is 153 

rad/s. which is higher than the result in Zhao et.al [26], which shows the superiority of 

approach used in this paper. Also the topological design in Fig. 3a is more practical than the 

optimal design in Fig. 3b. 
 

 
Figure 2. A clamped beam 

 
Table 1: Physical and geometrical properties of the clamped beam 

Parameter Value Unit 

Young’s modulus 25 GPa 

poisson’s ratio 0.3 --- 

mass density 2500 kg 

lumped mass 125 kg 

Beam length 14 m 

Beam width 2 m 

Beam thickness 0.01 m 

 

 
(a) 

 

 
(b) 

Figure 3. Topological design of the clamped beam with an additional non-structural mass. a. 

present study b. Evolutionary approach [25] 
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5.2 A rectangle cantilever beam 

As shown in Fig. 4, a cantilever beam with material and geometrical properties given in 

table 2 is presented. A concentrated non-structural mass posed on the middle of right side. 

The volume fraction is 40%. The existing material is uniformly distributed over the design 

domain. The resulted topological design by the proposed method is shown in Fig 5. The 

fundamental frequency of the above optimal topology is 12.92 Hz. The result is more 

optimized than one obtained by Zheng et.al [25]. 

 

 
Figure 4. A rectangle cantilever beam 

 

 
Table 2: Material and geometrical properties of the cantilever beam 

Parameter  Value Unit 

Young’s modulus  10 GPa 

poisson’s ratio  0.3 --- 

mass density  1000 kg 

lumped mass  16000 kg 

Beam length  8 m 

Beam width  4 m 

Beam thickness  1 m 

 

 

 
Figure 5. Optimal design of the cantilever beam with a concentrated mass attached on the middle 

of right side 
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6. CONCLUSION 
 

In the present research the MMA is employed to solve bound variable formulation of 

eigenvalue topology optimization. The modified SIMP model has been used to handle the 

localized modes problem associated with low density areas. The optimization problem is 

reformulated by the bound variable formulation in order to facilitate the treatment of 

bimodal eigenfrequencies. Some illustrative examples of the eigenvalue topological design 

for two-dimensional plane elasticity problems with an additional concentrated non-structural 

mass is presented. The results show the superiority of the procedure used in this paper. The 

results also demonstrate that by employing the proposed approach checkerboard patterns can 

be avoided and the resulted topological designs are more practical than those obtained by 

using other optimization techniques. 
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