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ABSTRACT 
 

In this paper, the effect of angle between predictor and corrector surfaces on the structural 

analysis is investigated. Two objective functions are formulated based on this angle and also 

the load factor. Optimizing these functions, and using the structural equilibrium path’s 

geometry, lead to two new constraints for the nonlinear solver. Besides, one more formula is 

achieved, which was previously found by other researchers, via a different mathematical 

process. Several benchmark structures, which have geometric nonlinear behavior, are analyzed 

with the proposed methods. The finite element method is utilized to analyze these problems. 

The abilities of suggested schemes are evaluated in tracing the complex equilibrium paths. 

Moreover, comparison study for the required number of increments and iterations is 

performed. Results reflect the robustness of the authors’ formulations. 
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1. INTRODUCTION 
 

Nonlinear analysis expresses the real behavior of structures under different types of loading. 

In other words, to find actual structural performances, material or geometric nonlinear 

behavior should be investigated. So far, a lot of different strategies for nonlinear structural 

analysis have been suggested. These techniques have their own merits and demerits, and yet; 

no perfect procedure is available. As notified in the literature review, an accurate method 

to trace the whole equilibrium paths of all structures has not been proposed until now. 
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Newton-Raphson algorithm is one of the most popular foundations of iterative methods 

[1]. Due to the failure of Newton-Raphson techniques on crossing snap-through regions, the 

displacement control procedure was introduced [2]. This solution was not able to passing 

through snap-back regions. In the 70’s, Wempner [3] and Riks [4] invented arc length 

methods. They defined the arc length parameter as the distance of the last static point to the 

supposed iteration path. The approach of finding arc length parameter led first to the normal 

plane method [5] and then, to the updated normal plane technique [6].  

In the constraint equation of the cylindrical arc length method, Crisfield ignored the force 

component [7]. He named his proposed solver, modified Riks-Wempner procedure. 

Subsequently, Tsai et al. used arc length algorithm in finite element method for analyzing of 

a composite cylindrical shell-like structure [8]. Some researchers minimized effective 

variables of the nonlinear analysis. Reduced residual load by Bergan [9], residual 

displacement by Chan [10] and residual length, perimeter and area in the research of 

Rezaiee-Pajand et al. [11], were minimized. In 1990, Yang et al. introduced generalized 

displacement control (GDC) method that could catch both load, and displacement limit 

points [12]. Cardoso et al. detected this efficient strategy, GDC method, as an orthogonal 

cylindrical arc length method [13]. In normal flow scheme, sequential iterative analyses on 

lines, which were perpendicular to Davidenko’s flow, were implemented to reach the 

structural equilibrium path [14]. Afterward, Saffari et al. formulated improved normal flow 

scheme [15]. 

On the other hand, the dynamic relaxation (DR) method was performed for post-buckling 

analysis of trusses [16]. Rezaiee-Pajand et al. applied DR technique in the nonlinear analysis 

for various structures [17, 18]. This capable algorithm set up a fictitious dynamic system to 

solve the nonlinear system of equations governing the structural behavior. Recently, 

Rezaiee-Pajand et al. created an efficient strategy by combining DR method with load factor 

and displacement increments [19]. From a strictly mathematical viewpoint, it could be 

implied to multi-point procedures with different convergence [20, 21]. In an extensive 

research, the geometric nonlinear analysis methods of structures were investigated and 

compared with each other [22]. 

Geometric nonlinear behavior is due to the structural large deformations. To perform this 

analysis, researchers found diverse constraint relations with different assumptions. 

According to the related literature, no accurate method to trace the whole equilibrium paths 

of all structures has not been proposed until now. In the present study, the geometries of 

predictor and corrector steps’ path are surveyed, and two objective functions are formed. 

Each of them has two independent variables. By this mathematical base, two novel 

constraint equations are created. Furthermore, one more constraint formula is concluded, 

which was found by other investigators in a different way. This outcome clearly 

demonstrates the validity of assumptions and formulations’ process. It has been shown that 

the geometric nonlinear behavior can lead to various complex structural static paths. To 

explore these performances, and show the abilities of the authors’ techniques, several two 

and three-dimensional trusses and planar frames are nonlinearly analyzed by exerting 

proposed constraints. 
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2. SOLVING NONLINEAR EQUATIONS 
 

Governing equation of the nonlinear behavior of structures is as follows: 

 

( , ) ( )R u P F u    (1) 

 

In the current equality, displacement vector, load factor, residual load vector, external 

force vector and internal force vector are shown by u ,  , ( , )R u  , P  and ( )F u , 

respectively. Residual load vector depends on the displacement and load factor variables. It 

has been emphasized that the load factor has an important role in the nonlinear structural 

analysis. If the displacement vector has m arrays, then the system of Equations (1) will have 

m+1 unknowns. The extra unknown for a structure with m degrees of freedom is because of 

 . Hence, for calculating the unknowns, one more relation is required in addition to 

Equations (1). Based on Fig. 1, in the n-th incremental step, the process of analysis is 

accomplished to find the structural equilibrium curve between n-1-th and n-th points. In the 

predictor step, to discover displacement increment in Equation (2), a suitable incremental 

load should be supposed. 

 
1 1

1 1( )n n nu K P     (2) 

 

In this relation, 
1nK  is the tangential stiffness matrix at the n-1-th point of the structural 

static curve. In the n-th incremental step, the coordinates of the first iteration point is 

accessed by Equality (2). Consecutive iterations are done to get beyond the point n within a 

defined tolerance. The load factor of each iteration is computed by constraint relation. It 

should be mentioned, displacement increment of the successive iteration steps is calculated 

by following linear equality [23]: 

 
n n n n

i i i iu u u       (3) 

 

Superscript n and subscript i represent the increment and iteration number of analysis, 

respectively. In the recent equation, 
n

iu 
 
and 

n

iu
 
are the displacement increments due to 

residual load and external force, correspondingly. These vectors are defined in the following 

relations: 

 
1( )n n n

i i iu K R     (4) 
1( )n n

i iu K P   
 

(5) 

 

In fact, the values of forces R  and P  are known at the beginning of each iteration. 

Therefore, their related displacements are available. According to Equation (3), finding 
n

iu
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only depends on the load factor. Based on the succeeding relations, the load factor and 

displacement increments of structure are gained by adding 
n

i and 
n

iu  to their previous 

increments, correspondingly: 

 

1

n n n

i i i       (6) 

1

n n n

i i iu u u   
 

(7) 

 

It is worth mentioning that in the former proposed methods, the positions of the 

predictor’s path and the corrector’s path were assumed arbitrary and then constraint equality 

was obtained [5-7]. On the contrary, in this study optimal angle between the predictor’s path 

and the corrector’s path is achieved by using mathematical tools along with the geometry of 

the equilibrium curve. Based on the optimized criteria, the relations required for the 

structural analysis are formulated. 

 

 
Figure 1. The process of advanced incremental-iterative methods 

 

2.1 First new method 

In this procedure, the angle, between the tangent of the static points on the structural 

equilibrium path and the trajectory which passes through the sequential iterative analyses, is 
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assumed as  . Outline of the proposed scheme for the j-th degree of freedom of structure is 

shown in Fig. 2. Based on this figure, the next relations between the specified angles are 

available: 

 

180 tan( ) tan( ( )) tan( )                   (8) 

 

where, 𝛼 and 𝛽 are the angles between the tangent of the static points and its relevant 

iterative analyses’ path with the displacement axis, correspondingly. In accordance with this 

definition, the tangent of these angles can be determined in the below forms: 

 

tan( )
n

i

n

i

P

u





  (9) 

tan( ) n

iK 

 

(10) 

 

Utilizing the trigonometry commands for Equation (8) and substituting Equation (9) and 

(10) in it, the succeeding equality is found: 

 

tan( )

tan( ) 1

n n

i i

n n

i i

P K

u K

 

 




 
 (11) 

 

Inserting Equations (3) and (5) into (11) and simplifying it, conclude the following 

relationship: 

 

tan( ) 2 tan( )

tan( ) 0

n T n T n T n nT n

i i i i i i

n nT n

i i i

P P P u P u u u

u u

       

   

       

   
 (12) 

 

It is possible to define the left hand of the current equation as a goal function. 

Consequently, the next function, G , in terms of two independent variables is established: 

 

( , ) tan( ) 2 tan( )

tan( )

n n T n T n T n nT n

i i i i i i i

n nT n

i i i

G P P P u P u u u

u u

         

   

        

  
 (13) 

 

Then, the process of optimizing Function (13), with respect to the angle   and the load 

factor, has the coming shapes: 

 

( ) 2 ( ) 0T T n nT n

i i in

i

G
P P P u u utan tan    




      


 (14) 
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2(1 tan ( )) ( ) 0n T nT n n nT n

i i i i i i

G
P P u u u u      




        


 

(15) 

 

The constraint equality of the first suggested method is obtained by solving the system of 

two Equations (14) and (15). As a result, the following load factor is calculated: 

 
nT n

n i i
i T nT n

i i

u u

P P u u

 


 

 


 
 (16) 

 

This constraint is used for the geometric nonlinear analysis of the benchmark structures 

in the next section. If the load component of Equality (16) is neglected, the familiar relation 

is attained, as follows: 

 
nT n

n i i
i nT n

i i

u u

u u

 


 

 
 

 
 (17) 

 

The last mentioned approximation leads to the outcome of the well-known procedure, 

called the minimum residual displacement method [10]. In other words, the authors’ 

formulation provides alternative proof of the former scheme, and it shows the generality and 

rightness of the suggested technique. 

 

 
Figure 2: First proposed scheme 
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2.2 Second new method 

In this way, the tangential stiffness matrix in the n-1-th point of the equilibrium path ( 1nK ) 

is utilized. From the geometric viewpoint, this stiffness matrix is denoted in Fig. 1. In fact, it 

is assumed that the stiffness matrix of iterative steps ( n

iK ) is equal to 1nK . By replacing 

Equation (3) into Equation (11), the equality is rewritten in the succeeding form: 

 
1 1 1tan( ) tan( )

tan( ) 0

n n n n n n n n n

i i i i i i

n n

i i

K P P K u K u u

u

       

  

            

  
 (18) 

 

According to the current relation, the next two-variable goal function, H , is proposed: 

 
1 1 1( , ) tan( ) tan( )

tan( )

n n n n n n n n n n

i i i i i i i

n n

i i

H K P P K u K u u

u

         

  

             

 
 (19) 

 

To optimize this function, its differentiation with respect to the independent variables 

should be taken, as follows: 

 

1 1 ( 0( ) )n n n n

i in

i

H
K P P K u utan tan   



  


       


 (20) 

2 1(1 tan ( )) ( ) 0n n n n n

i i i i

H
K P u u    




       


 

(21) 

 

Solving the last system of equations results in the following load factor: 

 

1

n
n i
i n n

i

u

K P u









 
 (22) 

 

By substituting Equation (5) in the recent equality, the last relation can be rewritten in the 

below form: 

 
1

1 1

n n
n i
i n n

K u

K K P P






 




  
 (23) 

 

The subsequent vector form of the second proposed constraint is achieved by inserting 

Equation (2) into the current relation:  

 

1

1 1

1( 1)

n T n
n i
i n T n T n

P u

K K P u

 


 




  
 (24) 
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To perform the analysis process, stiffness matrix must be turned into vector form. To 

achieve this goal, only main diagonal arrays of the stiffness matrix are utilized. By this 

action, the stiffness matrix changes into a vector with m components. In this paper, 

Constraint (24) is also used for the analysis of benchmark structures. To summarize the 

outcomes, the novel constraints are written in Table 1. 

 
Table 1: Proposed constraints 

Constraint Method 
nT n

n i i
i T nT n

i i

u u

P P u u

 


 

 


 
 First method 

1

1 1

1( 1)

n T n
n i
i n T n T n

P u

K K P u

 


 




  
 Second method 

 

 

3. NUMERICAL SAMPLES 
 

Based on the proposed Equations (16) and (24), a nonlinear geometric analysis computer 

program is provided. To be sure, the school program was utilized to find the accurate 

answers, as well. For years, this nonlinear finite element program has been used in the 

authors’ engineering school, and it has been proved to be free of errors. Several benchmark 

problems with geometric nonlinear behavior are investigated. With respect to the number of 

increments and iterations needed to find the structural equilibrium paths; the abilities of the 

proposed techniques are evaluated. It should be emphasized; the analysis’ important 

properties of each sample are notified in its subsection. 

 

3.1 Seven-member truss 

As demonstrated in Fig. 3, the planar truss structure is under concentrated load P. This 

structure has seven degrees of freedom. The cross-sectional area of the horizontal members 

is 54.85 cm2 and for the others is 51.56 cm2, correspondingly. The members’ modulus of 

elasticity is 6889.4 kN/cm2. This truss was used to verify higher-order stiffness matrix in the 

prediction of structural behavior [24]. Furthermore, it was employed for investigating the 

elastic buckling of members [25]. In this research, the reference load, the arc length of the 

first loading step, the maximum number of iterations in each increment and the residual 

error are assumed to be 1 kN, 0.01, 10 and 10-4, respectively. 

The load-deformation curves of node 1 in the vertical direction, and for the node 2 in the 

horizontal direction are drawn in Fig. 4 and 5, respectively. According to the results, both 

structural equilibrium paths have the load and displacement limit points. In spite of the fact 

that these nodes have complex behavioral curves, both proposed methods are able to trace 

entirely the relevant load-displacement diagram. 
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Figure 3. Seven-member truss 

 

 
Figure 4. The static curve of seven-member truss of node 1 at vertical direction 

 

 
Figure 5. The static curve of seven-member truss of node 2 at horizontal direction 

 

The number of increments and iterations are listed in Table 2. It should be noted, these 

responses for node 1 are analogous to node 2. According to the obtained results, the first 

technique can terminate the nonlinear analysis with much fewer increments and iterations 

than the second solution. In other words, although the second procedure captures all limit 

points of truss analysis, but it requires more time for analyzing the structure. Consequently, 

the first proposed method is more powerful in solving this problem. 
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Table 2: Analysis results of seven-member truss for node 1 or 2 

Number of iterations Number of increments Constraint 
30986 30559 First method 
42640 41741 Second method 

 

3.2 Two-member truss 

A two-dimensional truss with two degrees of freedom under a concentrated load, is 

displayed in Fig. 6. Young’s modulus of the members is 6889.4 kN/cm2 and their cross-

sectional areas are 96.77 cm2. This benchmark was numerically analyzed by Papadrakakis 

[16]. In another research, this truss was analyzed to check the accuracy of the higher-order 

stiffness matrix [24]. To solve this two-member truss, the reference load, arc length of the 

initial loading step, the maximum number of iterations in each increment and the tolerance 

of the response convergence are considered to be 1 kN, 0.1, 10 and 10-4, correspondingly. 
 

 
Figure 6. Two-member truss 

 

Fig. 7 indicates the structural equilibrium path of node 1 in the vertical direction 

which is obtained by the authors’ schemes. Evidently, both new strategies can pass 

through the load limit point. Based on the Fig. 7, the critical load value of this truss is 

compatible with the one obtained by Torkamani et al. [24]. 
 

 
Figure 7. The equilibrium curve of two-member truss’s node 1 at vertical direction 
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In fact, the second recommended procedure is an approximately method because of 

selecting only the diagonal stiffness matrix arrays for the analysis process. Nevertheless, 

based on Table 3, this procedure traces the equilibrium curve with fewer numbers of 

increments and iterations than the first one. By a little difference, analysis of the two-

member truss via the second strategy takes the first rank. 

 
Table 3: Analysis results of two-member truss 

Number of iterations Number of increments Constraint 
600 294 First method 
579 290 Second method 

 

3.3 Five-story frame 

Fig. 8 depicts a planar frame under the horizontal concentrated forces, and the vertical 

uniform distributed loads. The uniform distributed loads, applied to all beams, have the 

value of 10 kN/cm. This structure is modeled as a 29-element frame by supposing every 

beam or column member as one element. It should be added that the dynamic relaxation 

method was utilized for analyzing this benchmark problem, as well [26]. 

The elasticity modulus of all members is 2×104 kN/cm2. Other specifications of 

structure’s beams and columns are registered in Table 4. It should be informed; the 

equivalent nodal forces and moments of the uniform distributed loads are computed and 

used for the inputs of the computer program. In this paper, arc length of the first loading 

step, maximum iterations of each increment and residual error equal to 0.1, 10 and 10-4, 

respectively. 

 
Figure 8. Five-story frame 
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Table 4: The properties of five-story frame’s beams and columns 

Moment of inertia (cm4) Cross-sectional area (cm2) Member 
21227.8 66.45 Beam 

40957.17 94.84 Column 
 

The load-displacement responses of the five-story frame’s roof level via novel constraints 

are depicted in Fig. 9. According to this chart, both algorithms have the ability to find the 

structural equilibrium path for this frame. It should be added that the resulted curves are 

fully compatible with the other studies [26]. 

 

 
Figure 9. The load-displacement path of five-story frame’s roof at horizontal direction 

 

Comparing the findings of nonlinear analysis recorded in Table 5, illustrates that the 

second method needs 91824 iterations to analyze the structure. However, with the same 

number of increments, the first method completes the load-deflection curve of the frame 

with 91893 iterations. Thus, both novel solutions analyze this two-dimensional frame in 

almost the same time. 

 
Table 5: Analysis results of five-story frame 

Number of iterations Number of increments Constraint 
91893 10000 First method 
91824 10000 Second method 

 

3.4 Star shaped dome truss 

A three-dimensional truss of Fig. 10 is under the vertical load P = 1 kN in the center. This 

dome has 13 nodes and 24 members. Young’s modulus and cross-sectional area of members 

equal to 3.03×105 N/cm2 and 3.17 cm2, correspondingly. This benchmark structure is mostly 

considered for nonlinear analysis of three-dimensional trusses. For instance, star shaped 

dome truss was used to investigate the buckling effect on the overall stability of structure 

[27] and also assessing the ability of an automatic method to reveal the more precise 
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structural equilibrium path [28]. In addition, Rezaiee-Pajand et al. utilized the dynamic 

relaxation process for tracing the structural equilibrium curve of this truss [29, 30]. In this 

study, the initial loading step’s arc length, maximum iterations of each increment and the 

residual error are assumed 0.1, 10 and 10-4, respectively. 

 

 
Figure 10. Plan and view of star shaped dome truss 

 

At the first stage, the vertical displacement of node 1 is studied. The obtained load-

displacement graph is exposed in Fig. 11. It should be added that the vertical axis of the 

graph is shown dimensionless. This truss has snap-through behavior at node 1. Based on 

Fig. 11, the first proposed algorithm can pass limit points and yields the whole 

equilibrium path. Whereas, the second suggested solver is not able to catch the first limit 

point, and the related analysis was stopped there.  

 

 
Figure 11. The load-deflection curve of star shaped dome truss of node 1 at vertical direction 

 

The total number of analysis’ increments and iterations are inserted in Table 6. The 

first new technique traverses the curve, which is shown in Fig. 11, with 500 increments 

and 1006 iterations. The second new procedure is capable of tracing small part of the 

structural equilibrium path by 160 increments and 350 iterations. 
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Table 6: Analysis results of star shaped dome truss for node 1 or 2 

Number of iterations Number of increments Constraint 
1006 500 First method 
350 160 Second method 

 

 
Figure 12. The load-deflection curve of star shaped dome truss of node 2 at vertical direction 

 

In another analysis of this three-dimensional structure, the vertical displacement of the 

node 2 is checked. The related equilibrium curve has snap-through and snap-back regions. In 

accordance with Fig. 12 and similar to the results’ interpretation of node 1, the first novel 

procedure crosses every limit points successfully, but the other presented algorithm fails to 

catch the first limit point. It should be pointed out; the obtained results are compatible with 

predecessor findings [27]. 

The significant results of this node are analogous to the ones on Table 6. Eventually, it is 

concluded that the first strategy, which can accurately trace the structural equilibrium path 

for the specified nodes, is superior than the second one. 

 

3.5 Schwedler’s dome truss 

Plan and view of the Schwedler’s dome truss are displayed in Fig. 13. This truss has 97 

nodes and 264 members. All the peripheral nodes are hinged at the support. All axial 

stiffness of the members are 6.4×105 kN. Load P, which is applied on the central node, 

equals to 1 kN. To find the geometric nonlinear behavior of the three-dimensional trusses; 

Schwedler's truss was used [31]. Rezaiee-Pajand et al. analyzed this benchmark problem to 

verify orthogonal strategies and also minimum residual length, perimeter and area methods 

[11]. Moreover, Saffari et al. gained the structural equilibrium path of this dome structure by 

applying the two-point strategy [20]. In this article, inputs of the program for the arc length 

of initial loading step, maximum number of iterations in each increment and residual error 

are 0.1, 10 and 10-4, correspondingly. 
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Figure 13. Plan and view of Schwedler’s dome truss 

 

To investigate the ability of novel constraints given in Table 1, Schwedler’s dome 

truss is analyzed. The load-displacement curve of the vertical displacement of the 

highest node is demonstrated in Fig. 14. It can be seen, there are two load limit points in 

this structural equilibrium curve. The first solver captures the limit points and entirely 

traverses the relevant equilibrium path. However, the second strategy just represents a 

small part of the central node’s behavior. 
 

 
Figure 14. The load-deformation curve of Schwedler’s dome truss’s crest at vertical direction 

 

In Table 7, two main parameters of analysis are registered. The first solution 

thoroughly traces the structural load-displacement curve with 5209 increments and 

52090 iterations. The second solver incompletely passes the structural equilibrium curve. 

It is stopped in the 576-th increment and with 5760 iterations. Hence, the first presented 

solver is successful in the nonlinear analysis of this structure. 
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Table 7: Analysis results of Schwedler’s dome truss 

Number of iterations Number of increments Constraint 
52090 5209 First method 
5760 576 Second method 

 

3.6. Arc frame 

Fig. 15 displays a two-dimensional structure under an asymmetric loading. This arc structure 

is designed by authors and is modeled by 33 elements. In addition, this frame has two fixed 

supports. The elasticity modulus of all members is 6896.4 kN/cm2. Furthermore, the cross-

sectional area and the moment of inertia of the members are equal to 309.68 cm2 and 

7631.62 cm4, correspondingly. It should be mentioned, the reference load, the arc length of 

the first loading step, maximum iterations of each increment and the residual error are 

considered 1 kN, 0.1, 10 and 10-4, respectively. 

The load-displacement responses of the arc frame for node 1 are shown in Fig. 16. 

According to this diagram, both new schemes can represent the same structural equilibrium 

path. It should be noted that the obtained curves are compatible with the results of the other 

algorithms, as well. 

 

 
Figure 15. Arc frame 

 

 
Figure 16. The load-displacement path of arc frame of node 1 at vertical direction 
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The findings of nonlinear analysis are recorded in Table 8. As illustrated in this table, the 

second novel strategy analyzes the frame with fewer numbers of increments and iterations 

than the first suggested technique. In other words, using the second constraint of Table 1, for 

nonlinear analysis of this structure, is more efficient than another solution. 

 
Table 8: Analysis results of arc frame 

Number of iterations Number of increments Constraint 
4350 1320 First method 
3799 1293 Second method 

 

 

4. CONCLUSION  
 

In the advanced incremental-iterative methods, a load factor is assumed at the beginning of 

each analysis increment. This part is called the predictor step. By performing the iterative 

process, the hypothetical obtained point will converge towards the structural equilibrium 

path. This stage is called the corrector step. In this paper, two objective functions were 

established. These functions consist of two independent variables, namely, the load factor 

and the angle between predictor and corrector surfaces. By optimizing these goal functions, 

two new constraint equalities for the load factor increment were obtained. Since the authors’ 

formulas were general, one more constraint equation was also found that was similar to one 

of the former nonlinear solvers. By this new way, the previous method was once again 

mathematically verified. To evaluate the novel schemes, proposed constraints were applied 

in the geometric nonlinear analysis of several truss and frame structures. The benchmark 

samples had snap-through or snap-back behaviors. The outcomes of numerical tests 

illustrated that the first recommended technique could trace structural equilibrium paths in 

snap-through and snap-back regions and had acceptable compatibility with the previous 

researches. On the other hand, based on the numerical results, the first suggested technique 

was more qualified than the other nonlinear solver. It should be emphasized; the second 

proposed method is rooted in the use of only main diagonal arrays of the structural stiffness 

matrix in forming the related constraint equation. 

 

 

REFERENCES 
 

1. Chen WF, Lui EM. Stability Design of Steel Frames, CRC press, 1991. 

2. Zienkiewicz OC. Incremental displacement in non‐linear analysis, Int J Numer Meth 

Eng 1971; 3(4): 587-92. 

3. Wempner GA. Discrete approximations related to nonlinear theories of solids, Int J 

Solids Struct 1971; 7(11): 1581-99. 

4. Riks E. The application of Newton’s method to the problem of elastic stability, J Appl 

Mech 1972; 39(4): 1060-5. 



M. Rezaiee-Pajand and H. Afsharimoghadam 

 

126 

5. Riks E. An incremental approach to the solution of snapping and buckling problems, Int 

J Solids Struct 1979; 15(7): 529-51. 

6. Ramm E. Strategies for tracing the nonlinear response near limit points, Nonlinear 

Finite Elem Anal Struct Mech 1981; 63-89. 

7. Crisfield MA. A fast incremental/iterative solution procedure that handles “snap-

through”, Comput Struct 1981; 13(1): 55-62. 

8. Tsai CT, Palazotto AN. A modified Riks approach to composite shell snapping using a 

high-order shear deformation theory, Comput Struct 1990; 35(3): 221-6. 

9. Bergan PG. Solution algorithms for nonlinear structural problems, Comput Struct 1980; 

12(4): 497-509.  

10. Chan SL. Geometric and material non‐linear analysis of beam‐columns and frames 

using the minimum residual displacement method, Int J Numer Meth Eng 1988; 26(12): 

2657-69. 

11. Rezaiee-Pajand M, Tatar M, Moghaddasie B. Some geometrical bases for incremental-

iterative methods, Int J Eng, Trans B: Appl, 2009; 22(3): 245-56. 

12. Yang YB, Shieh MS. Solution method for nonlinear problems with multiple critical 

points, AIAA J 1990; 28(12): 2110-6. 

13. Cardoso EL, Fonseca JSO. The GDC method as an orthogonal arc‐length method, 

Commun Numer Meth Eng 2007; 23(4): 263-71. 

14. Allgower EL, Georg K. Homotopy methods for approximating several solutions to 

nonlinear systems of equations, Numer Solut Highly Nonlinear Prob 1979; 72: 253-270. 

15. Saffari H, Fadaee MJ, Tabatabaei R. Nonlinear analysis of space trusses using modified 

normal flow algorithm, J Struct Eng 2008; 134(6): 998-1005. 

16. Papadrakakis M. Inelastic post-buckling analysis of trusses, J Struct Eng 1983; 109(9): 

2129-47. 

17. Rezaiee-Pajand M, Taghavian-Hakkak M. Nonlinear analysis of truss structures using 

dynamic relaxation, Int J Eng, Trans B: Appl, 2006; 19(1): 11-22. 

18. Rezaiee-Pajand M, Alamatian J. Nonlinear dynamic analysis by dynamic relaxation 

method, Struct Eng Mech 2008; 28(5): 549-70. 

19. Rezaiee-Pajand M, Estiri H. Mixing dynamic relaxation method with load factor and 

displacement increments. Comput Struct 2016; 168: 78-91. 

20. Saffari H, Mansouri I. Non-linear analysis of structures using two-point method, Int J 

Non-Linear Mech 2011; 46(6): 834-40. 

21. Saffari H, Mirzai NM, Mansouri I. An accelerated incremental algorithm to trace the 

nonlinear equilibrium path of structures, Latin American J Solids Struct 2012; 9(4): 425-

42. 

22. Rezaiee-Pajand M, Ghalishooyan M, Salehi-Ahmadabad M. Comprehensive evaluation 

of structural geometrical nonlinear solution techniques Part I: Formulation and 

characteristics of the methods, Struct Eng Mech 2013; 48(6): 849-78. 

23. Batoz JL, Dhatt G. Incremental displacement algorithms for nonlinear problems, Int J 

Numer Meth Eng 1979; 14(8): 1262-7. 

24. Torkamani MAM, Shieh JH. Higher-order stiffness matrices in nonlinear finite element 

analysis of plane truss structures, Eng Struct 2011; 33(12): 3516-26. 



OPTIMIZATION FORMULATION FOR NONLINEAR STRUCTURAL ANALYSIS 

 

127 

25. Timoshenko SP, Gere JM. Theory of Elastic Stability, McGraw-Hill, New York, 1961. 

26. Rezaiee-Pajand M, Sarafrazi SR, Rezaiee H. Efficiency of dynamic relaxation methods 

in nonlinear analysis of truss and frame structures, Comput Struct 2012; 112: 295-310. 

27. Tanaka K, Kondoh K, Atluri SN. Instability analysis of space trusses using exact 

tangent-stiffness matrices, Finite Elem Anal Des 1985; 1(4): 291-311. 

28. Ligarò S, Valvo P. A self‐adaptive strategy for uniformly accurate tracing of the 

equilibrium paths of elastic reticulated structures, Int J Numer Meth Eng 1999; 46(6): 

783-804. 

29. Rezaiee-Pajand M, Sarafrazi SR. Nonlinear dynamic structural analysis using dynamic 

relaxation with zero damping, Comput Struct 2011; 89(13): 1274-85. 

30. Rezaiee-Pajand M, Alamatian J. Automatic DR structural analysis of snap-through and 

snap-back using optimized load increments, J Struct Eng 2010; 137(1): 109-16. 

31. Greco M, Gesualdo FAR, Venturini WS, Coda HB. Nonlinear positional formulation for 

space truss analysis, Finite Elem Anal Des 2006; 42(12): 1079-86. 


