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ABSTRACT 
 

Optimization techniques can be efficiently utilized to achieve an optimal shape for arch 

dams. This optimal design can consider the conditions of the economy and safety 

simultaneously. The main aim is to present an applicable and practical model and suggest an 

algorithm for optimization of concrete arch dams to enhance their seismic performance. To 

achieve this purpose, a preliminary optimization is accomplished using PSO procedure in 

the first stage. Capabilities of Ansys Parametric Design Language (APDL) are applied for 

modeling the Dam-Foundation-Reservoir system. In the second stage with training the 

neural network, Group Method of Data Handling (GMDH) and replacement of Ansys 

analyst, optimal results have been achieved with the lowest error and less number of 

iteration respectively. Then a real world double-arch dam is presented to demonstrate the 

effectiveness and practicality of the PSO-GMDH. The numerical results reveal that the 

proposed method called PSO-GMDH provides faster rate and high searching accuracy to 

achieve the optimal shape of arch concrete dams and the modification and optimization of 

shape have a quite important role in increasing the safety against dynamic design loads. 
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1. INTRODUCTION 
 

Dams are one of the most important structures in engineering because of the economical and 

social utilization, largeness of structural scale and the intensity of sensitivity to the damages. 

Moreover, proper shape designing and modelling of double-arch dams has been considered 
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them as an important problem in dam engineering.  

In double-arch dams, geometry of the structure has a great influence on safety and 

economy of design and also is an important factor on stability of the dam. During the last 

years, various studies related to optimized design of arch dams were reported in Refs. [28, 9]. 

In these studies, the effect of dam-water-foundation rock interaction was neglected. In recent 

years, the optimal shape design of arch dams considering dam-water-foundation rock 

interaction subjected to earthquake loading has been developed by few researchers [1, 10, 14]. 

Due to accelerating the convergence for exploring and finding promising regions in the 

search space, meta-heuristic optimization methods are quite suitable for global or near-

global searches. The particle swarm optimization (PSO) is one of the most popular meta-

heuristic algorithms which is inspired by the social behavior of flock population. Despite 

high speed of convergence in finding optimum design in the search space for global 

searches, facing a great number of structural analyses for finding solution in complex 

problems, slow searching speed especially in last iterations and trapping into local optimums 

are the most important deficiencies of PSO [15]. 

In this study, the concrete weight and the geometric parameters of the arch dam have 

been considered as the objective function and design variables, also principle stresses, 

sliding, overturning and eccentricity constrains have been defined as the constraints of the 

optimization process. For this purpose arch dam-water-foundation rock system has been 

simulated using the finite element method. In order to assess the validity of finite element 

method, the result of model have been compared with those of valid models provided in the 

literature and its performance has been verified [2]. 

A preliminary optimization is accomplished using PSO procedure in the first stage of 

PSO-GMDH. With the first optimization results a neural network has been built. Then it will 

be replaced instead of Ansys analysts in the next stages of the optimization. The results 

demonstrated the computational efficiency of particle swarm optimization (PSO). In 

addition, using approximation method could significantly reduce the total time of double 

arch dam optimization while having a high accuracy. 

 

 

2. GEOMETRICAL MODEL OF DOUBLE-ARCH DAM 
 

The most important stage of shape optimization of double arch dam is selecting an 

appropriate geometrical model. In this study to define the upstream curve of dam central 

section, as shown in Fig. 1, a polynomial of 3rd order is considered as following [2]: 

 

𝑦(𝑧) = 𝑏(𝑧) = −𝑆1𝑧 +
𝑆1 − 𝛽

2(𝑆1 + 𝑆2)

2𝛽ℎ(1 − 𝛽)
−
𝑆1 − 𝛽(𝑆1 + 𝑆2)

3𝛽ℎ2(1 − 𝛽)
𝑧3 (1) 

 

where ℎ, 𝑆1 and 𝑆2 are the height of dam, the slope at crest and the foundation of dam, also 

the point where the slope of upstream curve equals to zero is a position 𝑍 = 𝛽ℎ in which 

0 < 𝛽 ≤ 1 is constant. 

By dividing the height of dam into 𝑛 segment containing 𝑛 + 1 levels, the thickness of 

the central vertical section of dam is expressed as following: 
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𝑡𝐶(𝑧) = ∑𝐿𝑖(𝑍)

𝑛+1

𝑖=1

𝑡𝐶𝑖 (2) 

 

where 𝑡𝐶𝑖 indicates the thickness of the central vertical section at ith level. Also, in the above 

mentioned equation, 𝐿𝑖(𝑍) is the Lagrange interpolation function corresponding to ith level 

shown as: 

 

𝐿𝑖(𝑧) =
∏ (𝑧 − 𝑧𝑘 )
𝑛+1
𝑘=1

∏ (𝑧𝑖 − 𝑧𝑘 )
𝑛+1
𝑖=1

 , 𝑘 ≠ 𝑖 (3) 

 

where 𝑧𝑖 is the 𝑧 coordinate of ith level in the vertical section of dam. 

For the radii of curvature corresponding to upstream and downstream levels of dam 

( 𝑟𝑢 , 𝑟𝑑 ), as shown in Fig.2, two functions of nth order with respect to 𝑧 can be utilized as: 

 

𝑟𝑢(𝑧) = ∑𝐿𝑖(𝑍)

𝑛+1

𝑖=1

𝑟𝑢𝑖 (4) 

𝑟𝑑(𝑧) = ∑𝐿𝑖(𝑍)

𝑛+1

𝑖=1

𝑟𝑑𝑖 (5) 

 

In this stage, the shape of a double-arch dam can be defined using the two parabolic 

surfaces as [23]: 

 

𝑦𝑢(𝑥, 𝑢) =
1

2𝑟𝑢 (𝑧)
𝑥2 + 𝑏(𝑧) (6) 

𝑦𝑑(𝑥, 𝑢) =
1

2𝑟𝑑 (𝑧)
𝑥2 + 𝑏(𝑧) + 𝑡𝑐(𝑧) (7) 

 

In which 𝑦𝑢 and 𝑦𝑑 are the levels of upstream and downstream. 

According to the models shown in Fig. 1 and Fig. 2, a double arch dam can be created by 

a vector called 𝑋 that has (3𝑛 + 7) components including shape parameters of concrete 

double - arch dam as: 

 

𝑋𝑇 = {𝑆1, 𝑆2, 𝛽, 𝑥𝑝, 𝑡𝐶1, 𝑡𝐶2, … 𝑡𝐶𝑛+1, 𝑟𝑢1, 𝑟𝑢2, … 𝑟𝑢𝑛+1, 𝑟𝑑1, 𝑟𝑑2, … 𝑟𝑑𝑛+1} (8) 
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Figure 1. Central vertical section of double- arch dam [2] 

 

 
Figure 2. Section of double – arch dam [2] 

 

 

3. FINITE ELEMENT MODEL OF DAM-WATER-FOUNDATION ROCK 

SYSTEM 
 

In solving the fluid-structure interaction problem using finite element method (FEM), the 

discretized dynamic equations of the fluid and structure need to be considered 

simultaneously to obtain the coupled fluid-structure equation. 

 

3.1 Structural responses 

The solid dam is discretized using finite elements and its equations of seismic motion 

including the effects of the reservoir and the foundation are expressed as [24]. 
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𝑀𝑠�̈�𝑒 + 𝐶𝑠�̇�𝑒 + 𝐾𝑠𝑢𝑒 = −𝑀𝑠�̈�𝑔 + 𝑄𝑝𝑒 (9) 

 

where 𝑀𝑠 is the structural mass matrix, 𝐶𝑠 is the structural damping matrix, 𝐾𝑠 is the 

structural stiffness matrix, 𝑢𝑒 is the vector of the nodal displacements relative to the ground, 

�̈�𝑔 is the vector of the ground acceleration, and 𝑄𝑝𝑒 represents the nodal force vector 

associated with the hydrodynamic pressures produced by the reservoir. 

The structural damping in the system is usually included by a Rayleigh type of damping 

matrix given by [24]: 

 

𝐶𝑆 = �̅�𝑀𝑆 + �̅�𝐾𝑆 (10) 

 

where �̅� and �̅� are constants adjusted to obtain a desirable damping in the system, usually on 

the basis of given modal damping ratios. 

 

3.2 Reservoir responses 

For a compressible and inviscid fluid, the hydrodynamic pressure p resulting from the 

ground motion of the rigid dam satisfies the wave equation in the form [25, 26]. 

 

∇2𝑝 =
1

𝑐2
𝜕2𝑝

𝜕𝑡2
 (11) 

 

where c is the velocity of sound in water and ∇2 is the Laplacian operator. 

The following boundary conditions are defined by assuming that the effects of surface 

waves and the viscosity of the fluid are neglected. As shown in Fig. 3, some boundary 

conditions may be imposed on the fluid domain as follows: 

 

I. At the fluid-solid interface, 

 
𝜕𝑝

𝜕𝑛
= −𝜌𝑤𝑎𝑛 (12) 

 

where n is the unit normal vector, 𝑎𝑛 is the normal acceleration on the interface and 𝜌 is 

the mass density of the fluid. 

 
II. At the bottom of the fluid domain 

 
𝜕𝑝

𝜕𝑛
= −𝜌𝑎𝑛 − �̅�

𝜕𝑝

𝜕𝑡
 (13) 

 

where �̅� is a damping coefficient which is the fundamental parameter characterizing the 

effects of the reservoir bottom materials. relation between damping coefficient and ratio of 

reflected hydrodynamic pressure wave, 𝛼, is [27]: 
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𝛼 =
1 − �̅�𝑐

1 + �̅�𝑐
 (14) 

 

III. At the far end; a summerfield –type radiation boundary condition can be implemented, 

namely: 

 
𝜕𝑝

𝜕𝑛
= −

�̇�

𝑐
 (15) 

 

IV. At the free surface: 

 

𝑝 = 0 (16) 

 

Eqs. (11) and (15) can be discretized to get the matrix form of the wave equations as [25, 

26]. 

 

𝑀𝑓�̈�𝑒 + 𝐶𝑓�̇�𝑒 +𝐾𝑓𝑝𝑒 + 𝜌𝑤𝑄
𝑇(�̈�𝑒 + �̈�𝑔) = 0 (17) 

 

where 𝑀𝑓, 𝐶𝑓 and 𝐾𝑓 are the fluid mass, damping and stiffness matrices, and 𝑝𝑒 and �̈�𝑒 are 

the nodal pressure and relative nodal acceleration vectors, respectively. The term 𝜌𝑤𝑄
𝑇 is 

also often referred to as coupling matrix. 

 

 
Figure 3. The boundry conditions of the fluid domain 

 

3.3 The coupled fluid- structure equation 

The complete finite element discretized equations for the dam-water-foundation rock 

interaction problem are described by Eqs. (9) and (17) and they can be written in an 

assembled form as [25, 26]: 
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[
𝑀𝑠 0
𝑀𝑓𝑠 𝑀𝑓

] {
�̈�𝑒
�̈�𝑒
} + [

𝐶𝑠 0
0 𝐶𝑓

] {
�̇�𝑒
�̇�𝑒
} + [

𝐾𝑠 𝐾𝑠𝑓
0 𝐾𝑓

] {
𝑢𝑒
𝑃𝑒
} = {

−𝑀𝑠�̈�𝑔
−𝑀𝑓𝑠�̈�𝑔

} (18) 

 

where 𝑀𝑓𝑠 = 𝜌𝑤𝑄
𝑇 and 𝐾𝑠𝑓 = −𝑄. Eq. (18) expresses a second order linear differential 

equation having unsymmetrical matrices and may be solved by means of direct integration 

methods. 

In the present study, FEM of double curvature arch dam including the interaction effects 

of dam-water-foundation rock system is based on the above mentioned theory and 

assumption. The arch dam-water-foundation rock system as a three dimensional linear 

structure is subjected to earthquake loading. The foundation rock without mass is considered 

flexibly and the inertia and damping effects of the foundation rock are neglected. [25, 26]  

The foundation rock is extended to three times of dam height in upstream, downstream 

and downward directions. In the analysis phase, first, a static analysis of the arch dam-water-

foundation rock system is implemented under a gravity load and a hydrostatic pressure, and 

then the dynamic analysis of the system is performed using the Newmark time integration 

method [24]. 

Therefore the nodal relative displacement vector of arch dam is used to evaluate the 

principle stresses at the center of dam elements via conventional finite-element procedure.  

 

 

4. OPTIMIZATION PROBLEM OF DOUBLE-ARCH DAM 
 

The general shape of an optimization problem is defined as follows: 

Find 𝑋 = {𝑥1, 𝑥2, … . . , 𝑥𝑑}𝑇 

 

To minimize 𝑓(𝑋) (19) 

 

Subjected to 𝑔𝑖(𝑋, 𝑡) ≤ 0 ;  𝑖 = 1,2,… . . ,𝑚 ;  𝑡 = 0,… . . , 𝑇𝑒 

𝑋𝐿 ≤ 𝑋 ≤ 𝑋𝑈 

where 𝑓 , 𝑔𝑗 and 𝑡 are the objective function, ith constraint from m inequality constraints and 

the time. 𝑋𝐿 and 𝑋𝑈 are the lower bound and the upper bound of the design variables and 𝑇𝑒 

is the earthquake duration. 

 

4.1 Objective function 

The most effective design variables of double-arch dam are its geometrical parameters. The 

design variables are expressed as: 

 

𝑋 = {𝑆1, 𝑆2, 𝛽, 𝑡𝐶1, 𝑡𝐶2, … 𝑡𝐶𝑛+1, 𝑟𝑢1, 𝑟𝑢2, … 𝑟𝑢𝑛+1, 𝑟𝑑1, 𝑟𝑑2, … 𝑟𝑑𝑛+1}
𝑇 (20) 

 

In the present study, six different levels in the height of arch dam are considered 𝑛 = 5, 

hence the vector of the design variables has 22 elements. Because of the symmetrical shape 

of double-arch dam, the vector of variables consists of 21 variables. The concrete volume of 

the arch dam body is considered as the objective function, which can be obtained from 

integrating the arch dam surfaces as: 
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𝑓(𝑋) = ∬ |𝑦𝑑(𝑥, 𝑧) − 𝑦𝑢(𝑥, 𝑧)|𝑑𝑥𝑑𝑧
𝐴

 (21) 

 

where 𝑦𝑑 and 𝑦𝑢 are the upstream and downstream surfaces of the arch dam, and A is an area 

produced by projecting the dam body on xz plane. 

 

4.2 Design constraints 

In this study, the design constraints include behavior, geometric and stability constraints. 

The principle stresses in the center of each element are considered as the behavior constrain 

that can be defined as: 

 

𝜎𝐶
𝑡 ≤ 𝑘1𝑓𝑐 (22) 

𝜎𝑇
𝑡 ≤ 𝑘2𝑓𝑡 (23) 

 

where 𝜎𝐶
𝑡 and 𝜎𝑇

𝑡  are the principal compression and tention stresses in time t, respectively 𝑓𝑐 
and 𝑓𝑡 are the uniaxial compressive strength and the uniaxial tension strength for concrete. 

𝑘1 and 𝑘2 are the incremental coefficients which are considered as 1.3 and 1.5 in this study. 

Therefore these constraints are defined as: 

 

𝑔𝐶,𝑒(𝑋, 𝑡) =
𝜎𝐶
𝑡

𝑘1𝑓𝑐
− 1 , 𝑡 = 0, …… , 𝑇  ,   𝑒 = 1,2, … , 𝑛𝑒 (24) 

𝑔𝑇,𝑒(𝑋, 𝑡) =
𝜎𝑇
𝑡

𝑘2𝑓𝑡
− 1 , 𝑡 = 0, …… , 𝑇  ,   𝑒 = 1,2, … , 𝑛𝑒 (25) 

 

To control the stability of arch dams, the central angle of dam is limited in various levels 

of height. This constraint is expressed as follows: 

 

∅𝐿 ≤ ∅𝑖 ≤ ∅𝑈   ⇒

{
 

 𝑔𝑆,𝑖
𝑈 =

∅𝑖
∅𝑈

− 1

𝑔𝑆,𝑖
𝐿 = 1 −

∅𝑖
∅𝐿}
 

 
   𝑖 = 1,2,… , 𝑛 + 1 (26) 

 

where ∅𝐿 and ∅𝑈 are the central angle of dam for downstream and upstream levels in ith 

level which is equal to 90° and 130°. 
The most important geometric constraint is to prevent from intersecting of downstream 

and upstream faces optimization process as: 

 

𝑟𝑑𝑖 ≤ 𝑟𝑢𝑖   ⇒ 𝑔𝐺,𝑖 =
𝑟𝑑𝑖
𝑟𝑢𝑖
− 1         𝑖 = 1,2, … . . , 𝑛 + 1 (27) 

 

where 𝑟𝑑𝑖 and 𝑟𝑢𝑖 are the radii of curvature at the down and upstream faces of the dam in ith 

position in z direction. 

The slope of curve in the central section of crest and foundation is considered as 
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geometric constraint, which is defined as: 

 

𝑆1 ≤ 𝑆𝑎𝑙𝑙    ⇒ 𝑔𝑆1 =
𝑆1
𝑆𝑎𝑙𝑙

− 1 (28) 

𝑆2 ≤ 𝑆𝑎𝑙𝑙    ⇒ 𝑔𝑆2 =
𝑆2
𝑆𝑎𝑙𝑙

− 1 (29) 

 

where 𝑆1 and 𝑆2 are the slope of curve in the central section of crest and foundation. In this 

study the thickness of the central vertical section in the height of dam as geometric 

constraint is limited as follows: 

 

𝑡𝐿 ≤ 𝑡𝐶,𝑖 ≤ 𝑡𝑈    ⇒ {
𝑔𝑡,𝐿 =

𝑡𝐶,𝑖
𝑡𝐿
− 1

𝑔𝑡,𝑈 = 1 −
𝑡𝐶,𝑖
𝑡𝑈

}       𝑖 = 1,2, … , 𝑛 + 1 (30) 

 

where 𝑡𝐿 and 𝑡𝑈 are the upper and lower value of the thickness of the central vertical section 

dam. 

Also, to achieve the acceptable shape of arch dam in various levels,the following 

constraint is considered as a geometric constraint: 

 

𝑡𝐶,𝑖 ≤ 𝑡𝐶,𝑖+1    ⇒ 𝑔𝑡𝐶 =
𝑡𝐶,𝑖
𝑡𝐶,𝑖+1

− 1    𝑖 = 1,2,… , 𝑛 (31) 

 

4.3 Penalty function 

In the present study, the external penalty function method is employed to transform 

constrained optimization problem into unconstrained one as follows [29, 31]: 

 

𝑓(𝑋) = 𝑓(𝑋)(1 + 𝑟𝑝𝑃𝑓) (32) 

 

where 𝑓(𝑋), 𝑃𝑓 𝑎𝑛𝑑 𝑟𝑝 are the modified function, the penalty function and an adjusting 

coefficient. The penalty function based on the violation of normalized constraints [29] is 

expressed as the sum of all active constraints violation as follows:  

 

𝑃𝑓 =∑𝑚𝑎𝑥 [∑max (𝑔𝑖(𝑋, 𝑡), 0.0)
2, 0.0

𝑖

]

𝑇𝑒

𝑡=0

 (33) 

 

This formulation allows solutions with violated constraints and the objective function is 

always greater than non-violated one. Therefore, the penalty function (𝑃𝑓) in the 

optimization problem of arch dam is defined as the sum of all active constraint violations 

that expressed in Eqs. (24-31). 
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5. OPTIMIZATION METHOD 
 

In this study, the optimization method based on a combination of PSO and GMDH is 

presented for finding the optimal shapes of double-arch dams. In this section PSO and 

GMDH methods are introduced at first, then the proposed PSO-GMDH is described. 

 

5.1 Particle swarm optimization (PSO) 

PSO was introduced by Kennedy and Eberhart (15) in the mid 1990s. this method of 

optimization is inspired by social behaviour of animals such as fish, insects and birds. PSO 

involves a number of particles that are initialized randomly in the search space of an 

objective function. Each particle of the swarm represents a potential solution of the 

optimization problem. The ith particle in the tth iteration is associated with a position vector 

𝑋𝑖
𝑡, and a velocity vector 𝑉𝑖

𝑡,that are shown in the following, where d is the dimention of the 

solution space. 

 

𝑋𝑖
𝑡 = {𝑥𝑖1

𝑡 , 𝑥𝑖2
𝑡 , … , 𝑥𝑖𝑑

𝑡 } (34) 

𝑉𝑖
𝑡 = {𝑣𝑖1

𝑡 , 𝑣𝑖2
𝑡 , … , 𝑣𝑖𝑑

𝑡 } (35) 

 

The particle fly through the solution space and its position is updated based on its 

velocity, the best position particle (p best) and the global best position (g best) that swarm 

has visited since the first iteration as: 

 

𝑉𝑖
𝑡+1 = 𝑤𝑡𝑉𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡) (36) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (37) 

 

where 𝑟1 and 𝑟2 are two uniform random sequences generated from interval [0,1] , 𝑐1 and 𝑐2 

are the cognitive and social scaling parameters and 𝑤𝑡 is the inertia weight that controls the 

influence of the previous velocity. The performance of PSO is very sensitive to the inertia 

weight (𝑤) parameter which may decrease with the number of iteration as follows [33]: 
 

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
𝑡 (38) 

 

where 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are the maximum and minimum values of 𝑤, and 𝑡𝑚𝑎𝑥 is the limit 

numbers of optimization iteration. 

 

5.2 Group method of data handling (GMDH) 

The GMDH is a multilayer self organizing procedure able to build a polynomial 

approximation of the realationship between a dependent variable 𝑦 (output) and a number of 

independent variables 𝑥1, … , 𝑥𝑛 (inputs). The original idea was proposed by Ivakhnenko in 

1970. By means of the GMDH algorithm, a model can be represented as a set of neurons in 

which different pairs in each layer are connected through a quadratic polynomial and thus 

produce new neurons in the next layer. The formal definition is to find an approximate 

function 𝑓 so that it can be used instead of the actual one 𝑓, in order to predict output �̂� for a 
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given input vector 𝑋 = (𝑥1, 𝑥2, 𝑥3,….,𝑥𝑛) as close as possible to the actual 𝑦. [5, 8] 

General connection between inputs and outputs variables can be expressed by a 

complicated discrete form of  

 

𝑦 = 𝑎0 +∑𝑎𝑖𝑥𝑖

𝑛

𝑖=1

+∑∑𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+∑∑∑𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

+⋯ (39) 

 

which is known as the Kolmogorov-Gabor polynomial. [12] This full mathematical 

description can be represented by a system of partial quadratic polynomials consisting of 

only two variables (neurons) in the form of: 

 

�̂� = 𝐺(𝑥𝑖 , 𝑥𝑗) = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝐽 + 𝑎3𝑥𝑖𝑥𝐽 + 𝑎4𝑥𝑖
2 + 𝑎5𝑥𝑗

2 (40) 

 

To predict the output 𝑦, a typical feed forward GMDH – type network is shown in Fig. 4. 

The coefficient 𝑎𝑖 in Eq. (40) is calculated using regression techniques [11, 13] so that the 

difference between actual output, 𝑦 and the calculated one �̂�, for each pair of 𝑥1 , 𝑥𝑗 as input 

variables is minimized.  

Indeed, it can be seen that a tree of polynomials is constructed using the quadratic form 

given in Eq. (40) whose coefficients are obtained in a least-square sense. In this way, the 

coefficients of each quadratic function 𝐺𝑖 are obtained to optimally fit the output in the 

whole set of input - output data pair, that is 

 

𝑟2 =
∑ (𝑦𝑖 − �̂�)

2𝑀
𝑖=1

∑ (𝑦𝑖)
2𝑀

𝑖=1

   ⟹ 𝑚𝑖𝑛 (41) 

 

In the basic form of the GMDH algorithm, all the possibilities of two independent 

variables out of a total of n input variables are taken in order to construct the regression 

polynomial in the form of Eq. (40) that best fits the dependent observation 𝑦𝑖 (𝑖=1,2,…,𝑀)  in a 

least square sense. Consequently,  

(
𝑛
2
) =

𝑛 (𝑛 − 1)

2
 

Neurons will be built up in the second layer of the feed forward network from the 

observations. [12] In other words, it is now possible to construct M data triples 

{(𝑦𝑖 , 𝑥𝑖𝑝, 𝑥𝑖𝑞); (1,2,… ,𝑀)} from observation using such 𝑝, 𝑞 ∈ {1,2,… . , 𝑛} in the form of  

[

𝑥1𝑝 𝑥1𝑞 𝑦1
𝑥2𝑝 𝑥2𝑞 𝑦2
𝑥𝑀𝑝 𝑥𝑀𝑞 𝑦𝑀

] 

Using the quadratic sub_ expression in the form of Eq. (40) for each row of M data 

triples, the following matrix equation can be obtained as:  

 

𝐴𝑎 = 𝑌𝑡 (42) 

 

where a is the vector of unknown coefficients of the quadratic polynomial in Eq. (40), 
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𝑎 = {𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} and 𝑌 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑀}
𝑇 is the vector of output values 

from observations. It can be readily seen that the least – square technique from the multiple-

regression analysis leads to the solution of the normal equations in the form of  

 

𝐴 =

[
 
 
 
      1 𝑥1𝑝 𝑥1𝑞    𝑥1𝑝𝑥1𝑞 𝑥1𝑝

2       𝑥1𝑞
2

      1 𝑥2𝑝 𝑥2𝑞    𝑥2𝑝𝑥2𝑞 𝑥2𝑝
2       𝑥2𝑞

2

……………………
       1 𝑥𝑀𝑝 𝑥𝑀𝑞    𝑥𝑀𝑝𝑥𝑀𝑞 𝑥𝑀𝑝

2 𝑥𝑀𝑞
2

     

]
 
 
 

 (43) 

𝑎 = (𝐴𝑇. 𝐴)−1𝐴𝑇𝑌 (44) 

 

which determines the vector of the best coefficients of the quadratic Eq. (40) for the whole 

set of M data triples. It should be noted that this procedure is repeated for each neuron of the 

next hidden layer according to the connectivity topology of the network. However, such a 

solution directly from normal equations is rather susceptible to round off errors and more 

importantly to the singularity of these equations [5]. 

 

 
Figure 4. A feed forward GMDH-type network [5] 

 

5.3 The proposed PSO-GMDH 

In the optimization problem of large scale structures such as double arch dams, the structural 

analysis is time-consuming procedure. Furthermore, the optimization problem of double 

arch dam on shape has many design variables. Due to the aforementioned problems and the 

slow searching speed of PSO in the iterations, it can easily trap in local optimum, and 

therefore the exploitation capability of PSO is decreased. 

In the first stage of PSO-GMDH, a preliminary optimization is accomplished using PSO 

with Ansys analysis. In the second stage, with a number of particles randomly selected from 

the search space and the outputs that have been obtained from precise analysis, the GMDH 

network has been built. In the GMDH network the available data is separated into training 

and testing sets. At each layer, all possible input pairs are generated and the output of each 

layer is fitted to the training set. In fact, only n out of m outputs of a stage are chosen as 

intermediate variables and passed as inputs to the next stage. 

The procedure can be stopped according to one of the following two criteria. One is 

based on the rate of decrease of the approximation error, so that the algorithm can be 

stopped when this rate goes below a fixed threshold. The other criterion takes into account 
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the maximum admissible degree of the polynomial model, so that the algorithm is stopped 

when the degree of the approximating polynomial reaches that value. 

The PSO-GMDH method is executed by the following steps: 

Step 1: Utilize the PSO algorithm and find the optimum design with Ansys analyst. 

Step 2: Create neural network, GMDH with initial swarm of PSO and outputs of step1 

Step 3: Utilize the PSO with random selection of the swarm and replace GMDH network 

instead of Ansys. 

The algorithm flow of PSO – GMDH strategy is shown in Fig. 5. 

 

 
Figure 5. The flow chart of the proposed PSO – GMDH 

 

5.4 Verification of the proposed PSO_GMDH 

The performance of the proposed PSO_GMDH depends on some parameters. The 

appropriate selection of these parameters can lead to better solution. In this proposed 

optimization method, a great number of neurons are evaluated in each layer in order to 

achieve the optimal solution. However, there is no possibility of developing all neurons for 

each layer, where some of them have to be used for next layer. Thus a specified number of 

neurons will be chosen regarding the difference between approximate output error and 

precise error in each layer. As it follows, the parameter 𝑒𝑐 will be defined as:  

 

𝑒𝑐 =  𝛼 𝑒𝑚𝑖𝑛 + (1 −  𝛼)𝑒𝑚𝑎𝑥 (45) 

 

where 𝑒𝑚𝑖𝑛 and 𝑒𝑚𝑎𝑥 are the minimum and maximum error of neurons and 𝛼 is the selected 

pressure parameter in which 0 < 𝛼 < 1. 
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The output of each layer are defined as the inputs of next layer in this method, so to 

control the elements of network, the number of layers and neurons will be defined as well. In 

this study, to achieve the optimal design of an arch dam-water-foundation rock system 

subjected to earthquake loading, the evaluation of dam requires a dynamic analysis of FEM. 

Hence, the dynamic analysis of arch dam has high computational effort. Also, the stochastic 

nature of evolutionary search technique (FEA) makes the convergence of the process slow 

and the slow searching speed of PSO in the iteration can easily trap it in to local optimum 

but the proposed PSO_GMDH method can efficiently accelerate the optimation precess and 

reduce the computational cost. 

 

 

6. TEST EXAMPLE AND RESULTS 
 

In order to investigate the computational efficiency of the proposed meta-heuristic 

optimization method for the shape optimization of double-arch dams, Morrow Point arch 

dam, located 263 km southwest of Denver, Colorado, is considered as a real world structure. 

The dam structure is 143 m high with a crest length of 221 m and its construction consumed 

about 273600 𝑚3 concrete. The detailed properties of the arch dam-water system have been 

provided in Ref [32]. 

 

6.1 The shape optimization of double arch dam 

In the present study, twenty one variables are considered for creating the double arch dam 

geometry. The lower and upper bounds of design variables required for the optimization 

process can be determined using some preliminary design methods. These bounds are shown 

in Table 1. Also, for finding the optimum shape of the arch dam, the properties of concrete 

water and foundation as shown in Table 2 are considered. 

The ground motion recorded at Taft Lincoln School Tunnel during Kern country, 

California, earthquake of July 21, 1952, is selected as the excitation for analyses of Morrow 

Point arch dam. The ground motion acting transverse to the axis of the dam is defined by the 

S69E component of the recorded motion. This component of the recorded ground motion is 

shown in Fig. 6. 

 

 
Figure 6. Ground motion at Taft Lincoln Tunnel, Kern country, California, 1952 
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Table 1: The lower and upper bounds of design variables Morrow Point arch dam 

Upper bound (m) Lower bound (m) Design variable 

10 

15 

20 

25 

30 

35 

135 

125 

105 

90 

75 

45 

125 

115 

95 

75 

65 

45 

0.9 

0.36 

0.36 

5 

8 

12.5 

15 

17.5 

20 

100 

90 

80 

65 

50 

30 

95 

80 

70 

55 

45 

25 

0.5 

0 

0 

𝑡𝑐1 

𝑡𝑐2 

𝑡𝑐3 

𝑡𝑐4 

𝑡𝑐5 

𝑡𝑐6 

𝑟𝑢1 

𝑟𝑢2 

𝑟𝑢3 

𝑟𝑢4 

𝑟𝑢5 

𝑟𝑢6 

𝑟𝑑1 

𝑟𝑑2 

𝑟𝑑3 

𝑟𝑑4 

𝑟𝑑5 

𝑟𝑑6 

𝛽 

𝑆1 

𝑆2 

 
Table 2: The properties of materials 

Material Property Value Unit 

Dam body 

Elasticity modulus of concrete 270.58 
MPa 

Poisons ratio of concrete 0.2 

Mass density of concrete 2483 Kg/m3 

Uniaxial compressive strength of concrete 30 MPa 

Uniaxial tensile strength of concrete 1.5 MPa 

Biaxial compressive strength of concrete 53.6 MPa 

Water 
Mass density of water 1000 Kg/m3 

Speed of pressure wave 1440 m/s 

Wave reflection coefficient 0.9 - 

Foundation rock 

Elasticity modulus of foundation rock 27.580 
MPa 

Poison s ratio of foundation rock 0.2 

Mass density of foundation rock 0 - 

 

The parameters of PSO and PSO_GMDH used in optimization process are given in Table 

3 and 4, respectively. 
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Table 3: The parameter of PSO method 

30Swarm size

2Cognitive parameter (C1)

2Social parameter (C2)

0.4 Wmin

0.9Wmax

100 Number of interaction

 
Table 4: The parameter of PSO_GMDH method 

15Swarm size

0.6Selection pressure parameter

20Maximum number of Layers

40 Maximum neurons of each Layers

0.7Training Parameter

140 Number of interaction

 

6.2 Finite element model of Morrow point arch dam 

An idealized FE model of Morrow Point arch dam- water- foundation rock system is 

simulated using FEM as shown in Fig. 7(a). Also, the FEM of dam body is depicted in Fig. 

7(b).The geometric properties of the dam can be found in Ref. [32]. 

In order to validate FEM with the employed assumptions expressed, the first natural 

frequency of the symmetric mode of the arch dam for nine cases are determined from the 

frequency response function for the crest displacement. The results are compared with those 

reported by Hall and Chopra [32] as given in Table 5. 

 
Table 5: A comparisons of the natural frequencies from the literature with FEM 

Natural frequency (HZ) 
Foundation 

rock 
 

Wave 

reflection 

coefficient 

water case 

Error

% 

Present 

work 

Hall and 

Chopra [32] 
condition 

𝐸𝑓

𝐸𝑑
    

0.08 

0.53 

1.06 

0.28 

2.7 

2.73 

2.97 

0.28 

2.7 

4.27 

4.06 

3.88 

3.60 

3.26 

2.74 

3.13 

3.10 

3.26 

4.2735 

4.0816 

3.9216 

3.6101 

3.1746 

2.8169 

3.2258 

3.6101 

3.1746 

Rigid 

interaction 

interaction 

interaction 

interaction 

Rigid 

Rigid 

interaction  

interaction 

* 

2 

1 

1/2 

1/4 

* 

* 

1/2 

1/4 

- 

- 

- 

- 

- 

1 

1.5 

- 

- 

Empty 

Empty 

Empty 

Empty 

Empty 

full 

full 

Empty 

Empty 

1 

2 

3 

4 

5 

6 

7 

8 

9 
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Figure 7. (a) A finite element of Morrow point dam_water_foundation system, (b) The finite 

element of arch dam body 

 

6.3 Result of optimization 

In order to consider the stochastic nature of the optimization process, 10 independent 

optimization runs are performed for each method and the three best solutions are reported. 

The optimum designs of the double arch dam for using PSO and PSO_GMDH are given in 

Table 6 and 7, respectively.  

As revealed from the results of Fig. 8 and 9, the proposed PSO_GMDH perfoms 

acceptable solution with low error compared with PSO in less time. 

 
Table 6: Optimum designs of the dam obtained by PSO for the three best cases 

Variable (m)  Optimum design  

 Case 1 Case 2 Case 3 

𝑡𝑐1 7.20 5 7.63 

𝑡𝑐2 10 11.12 10 

𝑡𝑐3 12.50 12.5 12 

𝑡𝑐4 15 15 15 

𝑡𝑐5 17.50 17.50 17.50 

𝑡𝑐6 20 33.74 20 

𝑟𝑢1 117.5 100 135 

𝑟𝑢2 95 95 102.57 

𝑟𝑢3 80 85 89.89 

𝑟𝑢4 69.40 70.74 65 

𝑟𝑢5 58.89 59.92 60 

𝑟𝑢6 45 37.50 37.50 

𝑟𝑑1 95 95 130 
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𝑟𝑑2 90 88.37 97.57 

𝑟𝑑3 75 78.37 83.56 

𝑟𝑑4 62.20 65.74 57.39 

𝑟𝑑5 50.28 45 55 

𝑟𝑑6 35 37.50 36.25 

𝛽 0.72 0.93 0.85 

𝑆1 0.03 0.026 0.026 

𝑆2 0.36 0.102 0.073 

𝐶𝑜𝑛𝑐 𝑉𝑜𝑙 (𝑚3) 266938 274874 257898 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 2.43% 0.46% 5.73% 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒(𝑚𝑖𝑛) 220 210 230 

𝐴𝑣𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑐 𝑉𝑜𝑙 (𝑚3)  266570  

 
Table 7: Optimum designs of the dam obtained by PSO_GMDH for the three best cases 

Variable (m)  Optimum design  

 Case 1 Case 2 Case 3 

𝑡𝑐1 5.16 5.00 10 

𝑡𝑐2 10 10 10.57 

𝑡𝑐3 12.54 13.13 12.5 

𝑡𝑐4 15 15 15 

𝑡𝑐5 17.5 17.5 17.5 

𝑡𝑐6 35 20 20 

𝑟𝑢1 100 135 117.5 

𝑟𝑢2 95 95 95 

𝑟𝑢3 90 85 80 

𝑟𝑢4 75 80 70 

𝑟𝑢5 52.70 60 50 

𝑟𝑢6 37.5 40.59 36.92 

𝑟𝑑1 95 95 95 

𝑟𝑑2 85 90 90 

𝑟𝑑3 72.50 70 75 

𝑟𝑑4 70 70 65 

𝑟𝑑5 47.7 52.07 45 

𝑟𝑑6 37.5 32.79 25 

𝛽 0.5 0.64 0.5 

𝑆1 0.082 0.30 0.30 

𝑆2 0.30 0.20 0.20 

𝐶𝑜𝑛𝑐 𝑉𝑜𝑙 (𝑚3) 
264375 256500 25988

0 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 3.37% 6.2% 5.01% 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒(𝑚𝑖𝑛) 40 50 42 

𝐴𝑣𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑐 𝑉𝑜𝑙 (𝑚3)  261933.33  
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Figure 8. Convergence histories of the three best solutions of PSO for case 1 to 3 

 

 
Figure 9. Convergence histories of the three best solutions of PSO-GMDH for case 1 to 3 

 

 

7. CONCLUSION 
 

A two stage meta-heuristic optimization method is introduced to find the optimal shapes of 

double arch concrete dams including dam-water-foundation rock interaction subjected to 

earthquake loading. The proposed optimization method is based on the particle swarm 

optimization (PSO) and group method of data handling, which is called PSO_GMDH. 
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The main idea of this proposed method is to combine the advantages of PSO and GMDH 

method and improve the global search ability of PSO. Hence an approximation system can 

effectively accelerate the convergence of PSO. The randomly selected particles which are 

achieved from PSO will be the initial data of neural network and the optimization process is 

continued with training this network. In this study, a real world double arch dam is 

optimized. The optimum designs obtained by the proposed PSO_GMDH are also compared 

with those produced by PSO.  

PSO_GMDH shows the improvement in terms of computational efficiency, speed of 

convergence, capability of training network, optimum solution and low error of results in the 

optimization process. 
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