دوره 8، شماره 1 - ( 10-1396 )                   جلد 8 شماره 1 صفحات 75-53 | برگشت به فهرست نسخه ها

XML English Abstract Print


چکیده:   (23423 مشاهده)

The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle swarm optimization is employed as the core of a multi-objective optimization framework with a repository to save Pareto solutions. The proposed method is tested on a variety of benchmark functions and structural sizing examples. Results show that it can provide Pareto front by lower computational time in competition with some other popular multi-objective algorithms.

متن کامل [PDF 857 kb]   (6511 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1396/4/10 | پذیرش: 1396/4/10 | انتشار: 1396/4/10

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.