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ABSTRACT 
 

The main aim of the present study is to optimize steel moment frames in the framework of 

performance-based design and to assess the seismic collapse capacity of the optimal 

structures. In the first phase of this study, four well-known metaheuristic algorithms are 

employed to achieve the optimization task. In the second phase, the seismic collapse safety 

of the obtained optimal designs is evaluated by conducting incremental dynamic analysis 

and generating fragility curves. Three illustrative examples including 3-, 6-, and 12-story 

steel moment frames are presented. The numerical results demonstrate that all the 

performance-based optimal designs obtained by the metahuristic algorithms are of 

acceptable collapse margin ratio. 
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1. INTRODUCTION 
 

One of the modern seismic design procedures for the rehabilitation of existing structural 

systems and the seismic design of new structures is performance-based design (PBD) [1] 

which its main objective is to decrease vulnerability of structures subject to earthquake. In 

the PBD approach, nonlinear analysis procedures are employed to evaluate the seismic 

response of structures. Pushover analysis is a simplified static nonlinear procedure in which 

a predefined pattern of earthquake loads is applied incrementally to structures until a plastic 

collapse mechanism is reached. One of the major concerns of structural engineers and 

designers is to find cost-efficient structures having acceptable performance subject to 
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earthquake. To this end, structural optimization methodologies were developed in the last 

decades. Structural performance-based optimal design is a topic of growing interest [2-12].  

In general, there are two types of optimization techniques: gradient-based methods and 

metaheuristics. Many of gradient-based methods have difficulties when dealing with 

complex and discrete optimization problems, and they converge to local optima. In order to 

overcome these difficulties, it is necessary to use global search algorithms such as 

metaheuristics. Metaheuristics are designated based on stochastic natural phenomena and 

they have attracted a great deal of attention during the last two decades. As the metaheuristic 

optimization techniques require no gradient computations, they are simple for computer 

implementation. During the recent years, researchers have designed many metaheuristic 

algorithms and many successful applications of them have been reported in optimization 

literature. In the present work, four swarm intelligence and Physics-based algorithms 

including particle swarm optimization [13] (PSO), firefly algorithm (FA) [14] bat algorithm 

(BA) [15] and enhanced colliding bodies optimization (ECBO) [16] are employed due to 

their efficiency and simplicity.  

Seismic assessment of structures is one of the most attractive research fields in structural 

engineering. In order to determine the seismic safety factor of structures, collapse fragility 

curves can be generated using the results of incremental dynamic analysis (IDA) [17] and 

the collapse margin ratio (CMR) [18] can be subsequently computed. The work of Fattahi 

and Gholizadeh [19] is the first study in the field of seismic fragility assessment of optimal 

steel moment frame (SMF) structures and further studies need to be conducted in this area. 

In the present work, 3-, 6-, and 12-story SMFs are optimized in the framework of PBD by 

using PSO, FA, BA, and ECBO metaheuristics and then the seismic collapse safety of the 

optimal designs are assessed.  

 

 

2. PERFORMANCE-BASED DESIGN OPTIMIZATION 
 

Based on the modern approach of PBD, the structures should meet performance objectives 

for a number of different hazard levels ranging from earthquakes with a small intensity and 

with a small return period to a more destructive event with large return period. According to 

FEMA-350 [20], performance ratings are divided into two levels: Immediate Occupancy 

(IO), and Collapse Prevention (CP). The IO level implies very light damage with minor 

local yielding and negligible residual drifts, while the CP level is associated with extensive 

inelastic distortion of structural members with little residual strength and stiffness. 

According to FEMA-350 [20], two hazard levels are defined as earthquakes with 50% and 

2% probability of exceedance in 50 years.  

In the framework of PBD, geometric constraints should be checked at each structural 

joint to ensure that the dimensions of beams and columns are consistent. As the strength 

constraints, the strength of structural members need to be checked for gravity loads based on 

AISC 360-16 [21] design code. Based on FEMA-350 [20], the constraints of confidence 

level (CL) at IO and CP performance levels can be written as follows: 

 

0IOIO CLCL  (1) 

0CPCP CLCL

 
(2) 
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where IOCL = 50% and CPCL = 90% are minimum confidence levels for IO and CP 

performance levels, respectively.  

The confidence level for hazard levels can be computed using the following equation:. 
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in which Φ is the normal cumulative distribution function; k is the slope of the hazard curve; 

γ is a demand variability factor; βUT is an uncertainty measure equal to the vector sum of the 

logarithmic standard deviation of the variations in demand and capacity resulting from 

uncertainty; γa is an analysis uncertainty factor; D is the calculated demand; C is the capacity 

of the structure; and ϕ is a resistance factor; and b=1.0 [20].  

In this work, pushover analysis is conducted to evaluate the structural nonlinear 

responses. In this method, the structure is pushed with a specific distribution of lateral loads, 

until the displacement of a specific point of the structure reaches the target displacement and 

it can be obtained as follows: 
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where C0 relates the spectral displacement to the likely building roof displacement; C1 

relates the expected maximum inelastic displacements to the displacements calculated for 

linear elastic response; C2 represents the effect of the hysteresis shape on the maximum 

displacement response and C3 accounts for P-D effects. Te is the effective fundamental 

period of the building in the direction under consideration; Sa is the response spectrum 

acceleration corresponding to the Te; and g is ground acceleration. 

The problem of performance-based optimization of SMFs can be formulated as follows: 

 

Minimize: 



ne

i

iii lAXW
1

)(   (5) 

Subject to: gj (X) ≤ 0 , j = 1, 2, …, nc

 

(6) 

 

where X is a vector of design variables; W is the weight of structural elements; ρi, Ai, and li 

are weight density, cross-sectional area and length of the ith element, respectively; and gj is 

the jth design constraint. 

 

 

3. METAHEURISTIC ALGORITHMS 
 

The main idea behind designing the metaheuristic algorithms is to tackle complex 

optimization problems where other optimization methods have failed to be effective. 

Metaheuristics are applied to a very wide range of problems and they mimic natural 

metaphors to solve complex optimization problems. In this study, PSO, FA, BA and ECBO 

metaheuristics are applied to solve the PBD optimization problem of SMFs. 
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3.1 Particle swarm optimization 

Eberhart and Kennedy [13] proposed PSO to simulate the motion of bird swarms. The 

position of each particle is updated based on the social behavior of the swarm, which adapts 

to its environment by returning to promising regions of design space previously discovered 

and searching for better positions over time. Numerically, the position of the ith particle, Xi, 

at iteration t+1 is updated as follows: 
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where t
iV  is the velocity vector at iteration t; r1 and r2 represents random numbers between 0 

and 1;
 

t
iP  represents the best ever particle position of particle i; tGbest corresponds to the 

global best position in the swarm up to iteration t; c1, and c2 are social parameters; ωmax and 

ωmin are the maximum and minimum values of ω, respectively; and tmax is the number of 

maximum iterations. 

 

3.2 Firefly algorithm 

The FA inspired by the flashing behavior of fireflies. Fireflies communicate, search for pray 

and find mates using bioluminescence with varied flashing patterns [14]. Attractiveness of 

each firefly is proportional to its brightness, thus for any two flashing fireflies, the less 

bright firefly will move towards the brighter one. The attractiveness is proportional to the 

brightness and they both decrease as their distance increases. If there is no brighter one than 

a particular firefly, it will move randomly. 

The attractiveness β, which is related to the judgment of the beholder, can be defined as: 

 
2-

0e
r.   (10) 

 

where r is the distance of two fireflies, β0 is the attractiveness at r = 0, and γ is the light 

absorption coefficient.  

The distance between two fireflies i and j at Xi and Xj respectively, is determined as 

follows: 
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where xi,k is the kth parameter of the spatial coordinate xi of the ith firefly.  

The movement of a firefly i towards a more attractive firefly j is determined as follows: 
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where the second term is related to the attraction, while the third term is randomization with 

α being the randomization parameter. In addition, r1 is a random number generator 

uniformly distributed in [0, 1]. 

 

3.3 Bat algorithm 

The BA meta-heuristic is inspired from the echolocation behavior of microbats [15]. 

Echolocation is an advanced hearing based navigation system used by bats to detect objects 

in their surroundings by emitting a sound to the environment. The position and velocity of 

bats can be updated in design space as follows: 
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where fmin and fmax are the lower and upper bounds imposed for the frequency range of bats. 

In this study, fmin = 0.0 and fmax = 1.0 are used; ui from [0,1] is a vector containing uniformly 

distribution random numbers. 

A local search is implemented on a randomly selected bat from the current population 

using the following equation: 

 
11   t
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where εj is a uniform random number in the range of [-1, 1] selected for each design variable 

of the selected bat; At+1 is the average loudness of all the bats at the current iteration.  

The loudness Ai and the rate ri of pulse emission have to be updated accordingly as the 

iterations proceed. In this work, A0 =1 and Amin = 0 also, r0 = 0 and rmax = 1. 
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3.4 Enhanced colliding bodies optimization  

Kaveh and Ilchi Ghazaan [16] proposed enhanced colliding bodies optimization (ECBO) to 

improve convergence rate and reliability of colliding bodies optimization (CBO) [22] by 

adding a memory to save some of the best solutions during the optimization process and also 

utilizing a mutation operator to decrease the probability of trapping into local optima. The 

basic steps of ECBO are as follows [16]: 

 

1. The initial positions of all colliding bodies (CBs) are determined randomly in an m-

dimensional search space as follows: 
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0    (19) 



M. Danesh, S. Gholizadeh and C. Gheyratmand 

 

488 

in which 0

iX  is the initial solution vector of the ith CB. Here, Xmin and Xmax are respectively 

the lower and upper bounds of design variables; r is a random vector in the interval [0, 1]; n 

is the number of CBs. 

2. The value of mass for each CB is evaluated as follows: 
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where F(Xi) is the objective function value of the ith CB. 

3. Colliding memory (CM) is utilized to save a number of historically best CBs and their 

related masses. Solution vectors in CM, are added to the population and the same number 

of current worst CBs are deleted. Finally, CBs are sorted according to their masses. 

4. CBs are divided into two equal groups: 

(a) Stationary group; 
2
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n
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5. The velocities of stationary and moving bodies before collision are evaluated as follows: 
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6. The velocities of stationary and moving bodies after collision are evaluated as follows: 
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where ε is the coefficient of restitution. 

7. The new position of each CB is calculated as follows: 

 

SSSS iiii VRXX  new  (26) 

MMMM iiii VRXX  new

 

(27) 

 

where 
Si

R and 
Mi

R are random vectors uniformly distributed in the range of [-1,1]. 

8. A random parameter pro is introduced and it is specified whether a component of each 

CB must be changed or not. For each CB, pro is compared with rni (i=1,…,n) which is a 

random number uniformly distributed within (0, 1). If rni < pro, one dimension of the ith 

CB is selected randomly.  

9. When a stopping criterion is satisfied, the optimization process is terminated. 
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4. SEISMIC COLLAPSE SAFETY ASSESSMENT 
 

The methodology proposed by FEMA-P695 [18] is an efficient IDA-based approach to 

assess the collapse capacity of structures. In this methodology, many nonlinear time-history 

analyses should be implemented for a suit of 22 ground motions listed in Table 1. 

 
Table 1: Ground motion records set 

Name M Year Record Station 

Northridge 6.7 1994 Beverly Hills - Mulhol 

Northridge 6.7 1994 Canyon Country-WLC 

Duzce, Turkey 7.1 1999 Bolu 

Hector Mine 7.1 1999 Hector 

Imperial Valley 6.5 1979 Delta 

Imperial Valley 6.5 1979 El Centro Array #11 

Kobe, Japan 6.9 1995 Nishi-Akashi 

Kobe, Japan 6.9 1995 Shin-Osaka 

Kocaeli, Turkey 7.5 1999 Duzce 

Kocaeli, Turkey 7.5 1999 Arcelik 

Landers 7.3 1992 Yermo Fire Station 

Landers 7.3 1992 Coolwater 

Loma Prieta 6.9 1989 Capitola 

Loma Prieta 6.9 1989 Gilroy Array #3 

Manjil, Iran 7.4 1990 Abbar 

Superstition Hills 6.5 1987 El Centro Imp. Co. 

Superstition Hills 6.5 1987 Poe Road (temp) 

Cape Mendocino 7.0 1992 Rio Dell Overpass 

Chi-Chi, Taiwan 7.6 1999 CHY101 

Chi-Chi, Taiwan 7.6 1999 TCU045 

San Fernando 6.6 1971 LA - Hollywood Stor 

Friuli, Italy 6.5 1976 Tolmezzo 

 

To implement IDA, engineering demand parameter (EDP) and the intensity measure (IM) 

are usually taken as maximum inter-story drift ratio, dmax, and 5% damped spectral 

acceleration at structural fundamental period, Sa(T1, 5%), respectively. In this way, nonlinear 

time-history analyses of structures for increasingly scaled records are performed and IDA 

curves are generated and this process is continued until one of the collapse conditions is 

satisfied. The results of IDA curves are then used to generate collapse fragility curves. 

Collapse margin ration (CMR) [18] is defined as the ratio of the spectral acceleration for 

which half of the pre-defined earthquake records cause collapse (Sa
50%) to the spectral 

acceleration of the maximum considered earthquake (MCE) ground motion (Sa
MCE) as 

follows:  
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5. NUMERICAL EXAMPLES 
 

Three numerical examples of 3-, 6-, and 12-story SMFs, shown in Fig. 1, are illustrated. The 

sections of all members are selected from the W-shaped sections listed in Table 2. The 

modulus of elasticity and yield stress are 210 GPa and 235 MPa, respectively. The 

constitutive law is bilinear with pure strain hardening slope of 3% of the elastic modulus. 

The dead and live loads of 2500 and 1000 kg/m are applied to the all beams, respectively. 

 

 
Figure 1. Grouping details of 3-, 6- and 12-story SMFs 

 

Table 2: Available W-sections 

Columns 
 

Beams 

No. Profile No. Profile No. Profile No. Profile 

1 W14×48 13 W14×257  1 W12×19 13 W21×50 

2 W14×53 14 W14×283  2 W12×22 14 W21×57 

3 W14×68 15 W14×311  3 W12×35 15 W24×55 

4 W14×74 16 W14×342  4 W12×50 16 W21×68 

5 W14×82 17 W14×370  5 W18×35 17 W24×62 

6 W14×132 18 W14×398  6 W16×45 18 W24×76 

7 W14×145 19 W14×426  7 W18×40 19 W24×84 

8 W14×159 20 W14×455  8 W16×50 20 W27×94 

9 W14×176 21 W14×500  9 W18×46 21 W27×102 

10 W14×193 22 W14×550  10 W16×57 22 W27×114 

11 W14×211 23 W14×605  11 W18×50 23 W30×108 

12 W14×233 24 W14×665  12 W21×44 24 W30×116 

 

In this study, the 5%‐ damped acceleration response spectra of frequent earthquake and 

maximum considered earthquake of the Iranian Seismic Code 2800 [23] with less than 

respectively 50% and 2% probability of exceedance in 50 years are employed.  
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5.1 Example 1: 3-story SMF 

In 3-story SMF example, PSO, FA, BA, and ECBO metaheuristics are used to conduct 10 

independent PBD optimization runs and the best design obtained by each algorithm are 

compared in Table 3. It can be observed that BA dominates all the other algorithms and the 

second best algorithm is ECBO. The IDA and fragility curves of the best designs found by 

different algorithms are depicted in Figs. 2 and 3, respectively. 

 
Table 3: PBD optimization results for 3-story SMF 

Design variables 
Algorithm 

PSO FA BA ECBO 

C1 W14×53 W14×53 W14×53 W14×48 

C2 W14×68 W14×68 W14×68 W14×74 

C3 W14×48 W14×48 W14×48 W14×48 

C4 W14×53 W14×48 W14×48 W14×48 

B1 W12×22 W12×22 W12×22 W12×22 

B2 W12×22 W12×22 W12×22 W12×22 

B3 W12×19 W12×22 W12×19 W12×22 

Weight (kg) 3152.90 3176.15 3130.16 3139.76 

CLIO (%) 53.48 52.65 53.35 51.28 

CLCP (%) 99.75 99.76 99.75 99.75 

 

 
Figure 2. IDA curves for the optimum 3-story SMF structures found by (a) PSO, (b) FA, (c) BA 

and (d) ECBO 
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Figure 3. Fragility curves for the optimum 3-story SMF structures found by (a) PSO, (b) FA, (c) 

BA and (d) ECBO 

 

The results of seismic collapse safety assessment of the optimally designed 3-story SMF 

structures are summarized in Table 4. It can be observed that ACMR values of all the PBD 

optimal designs are almost the same and these optimal designs are of significant collapse 

safety. 

 
Table 4: Seismic collapse safety parameters for optimal 3-story SMFs 

Seismic parameters 
Algorithm 

PSO FA BA ECBO 

Sa
50% 5.70 5.35 5.52 5.56 

Sa
MCE 1.72 1.73 1.72 1.73 

CMR 3.31 3.09 3.21 3.21 

ACMR 4.01 3.99 4.02 4.00 

Acceptable ACMR 1.96 1.96 1.96 1.96 

 

5.2 Example 2: 6-story SMF 

The best results of 10 independent PBD optimization runs of PSO, FA, BA, and ECBO 

metaheuristics for 6-story SMF are given in Table 5. The obtained numerical results 

demonstrate that the structural weight of the best design obtained by BA is lighter than that 

of the other optimization algorithms. In addition, it is revealed that the second best design is 

obtained by ECBO.  
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Table 5: PBD optimization results for 6-story SMF 

Design variables 
Algorithm 

PSO FA BA ECBO 

C1 W14×74 W14×74 W14×68 W14×74 

C2 W14×82 W14×74 W14×68 W14×82 

C3 W14×53 W14×53 W14×68 W14×68 

C4 W14×68 W14×74 W14×68 W14×68 

C5 W14×53 W14×48 W14×48 W14×48 

C6 W14×53 W14×53 W14×53 W14×53 

B1 W12×50 W18×50 W12×50 W16×45 

B2 W18×35 W18×35 W18×35 W18×35 

B3 W12×22 W12×22 W12×22 W12×19 

Weight (kg) 11585.74 11470.52 11409.88 11426.56 

CLIO (%) 56.73 59.98 56.79 51.02 

CLCP (%) 99.45 99.49 99.31 99.62 

 

In this example, Figs. 4 and 5 show the IDA and fragility curves of the best designs, 

respectively. 

 

 

 
Figure 4. IDA curves for the optimum 6-story SMF structures found by (a) PSO, (b) FA, (c) BA 
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Figure 5. Fragility curves for the optimum 6-story SMF structures found by (a) PSO, (b) FA, (c) 

BA and (d) ECBO 

 

For the optimal 6-story SMFs, the results of seismic collapse safety assessment are 

reported in Table 6. It can be observed that ACMR values of all the seismic optimal designs 

are almost the same and the seismic collapse capacity of these optimal designs is significant.  

 
Table 6: Seismic collapse safety parameters for optimal 6-story SMFs 

Seismic parameters 
Algorithm 

PSO FA BA ECBO 

Sa
50% 3.14 3.31 3.14 3.32 

Sa
MCE 1.22 1.22 1.21 1.28 

CMR 2.57 2.71 2.60 2.59 

ACMR 3.14 3.31 3.17 3.18 

Acceptable ACMR 1.96 1.96 1.96 1.96 

 

5.3 Example 3: 12-story SMF 

For the 6-story SMF, 10 independent PBD optimization runs are performed by PSO, FA, BA, 

and ECBO metaheuristics and the best solutions of the algorithms are compared in Table 7. 

The results indicate that among the obtained solutions, the best design in terms of structural 

weight is ECBO and the second best design algorithm is BA. In the present example, the IDA 

and fragility curves for the optimal designs of 12-story SMFs are shown in Figs. 6 and 7, 

respectively. 
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Table 7: PBD optimization results for 12-story SMF 

Design variables 
Algorithm 

PSO FA BA ECBO 

C1 W14×132 W14×132 W14×132 W14×82 

C2 W14×145 W14×145 W14×145 W14×145 

C3 W14×159 W14×159 W14×159 W14×159 

C4 W14×82 W14×82 W14×82 W14×82 

C5 W14×132 W14×132 W14×132 W14×132 

C6 W14×145 W14×145 W14×145 W14×145 

C7 W14×68 W14×74 W14×68 W14×68 

C8 W14×132 W14×132 W14×132 W14×132 

C9 W14×132 W14×132 W14×132 W14×132 

C10 W14×68 W14×68 W14×68 W14×68 

C11 W14×82 W14×82 W14×82 W14×82 

C12 W14×82 W14×82 W14×82 W14×82 

C13 W14×53 W14×53 W14×53 W14×53 

C14 W14×68 W14×68 W14×68 W14×68 

C15 W14×68 W14×68 W14×68 W14×68 

C16 W14×48 W14×48 W14×48 W14×48 

C17 W14×48 W14×48 W14×48 W14×48 

C18 W14×68 W14×68 W14×53 W14×68 

B1 W16×45 W16×45 W16×45 W18×40 

B2 W16×50 W16×50 W16×50 W16×50 

B3 W16×45 W16×45 W16×45 W16×45 

B4 W18×35 W18×35 W18×35 W18×35 

B5 W12×35 W12×35 W12×35 W12×35 

B6 W12×19 W12×19 W12×19 W12×19 

Weight (kg) 38319.97 38429.13 38186.56 37119.25 

CLIO (%) 55.0721 55.1957 55.3631 57.4149 

CLCP (%) 99.0055 99.0152 99.0048 99.1086 

 

     

0

2

4

6

8

10

0.00 0.02 0.04 0.06 0.08 0.10

S
a

(T
1
,5

%
) 

(g
)

dmax (%)

(a)

0

2

4

6

8

10

0.00 0.02 0.04 0.06 0.08 0.10

S
a

(T
1
,5

%
) 

(g
)

dmax (%)

(b)



M. Danesh, S. Gholizadeh and C. Gheyratmand 

 

496 

 
Figure 6. IDA curves for the optimum 12-story SMF structures found by (a) PSO, (b) FA, (c) 

BA and (d) ECBO 

 

 
Figure 7. Fragility curves for the optimum 12-story SMF structures found by (a) PSO, (b) FA, 

(c) BA and (d) ECBO 

 

Table 8: Seismic collapse safety parameters for optimal 12-story SMFs 

Seismic parameters 
Algorithm 

PSO FA BA ECBO 

Sa
50% 1.90 1.90 1.90 1.86 

Sa
MCE 0.82 0.82 0.82 0.81 

CMR 2.32 2.32 2.32 2.29 

ACMR 2.84 2.90 2.90 2.84 

Acceptable ACMR 1.96 1.96 1.96 1.96 
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For the optimal 12-story SMFs, seismic collapse assessment is achieved and the results 

are reported in Table 8. The results indicate that the optimal designs have very close ACMR 

values that all of them are acceptable. 

 

 

6. CONCLUSIONS 
 

This paper is devoted to evaluation of seismic collapse capacity of steel moment frames 

designed for optimal structural weight by the seismic performance-based design 

methodology. In order to reduce the dependency of the results to the chosen optimization 

method, four popular metaheuristics are utilized to tackle the performance-based design 

optimization problem of steel moment frame structures. The selected algorithms are particle 

swarm optimization (PSO), firefly algorithm (FA), bat algorithm (BA) and enhanced 

colliding bodies optimization (ECBO). During the optimization process, the design spectra 

of the Iranian seismic code 2800 are used and the constraints are checked according to 

FEMA-350 code. The seismic collapse capacity of the obtained optimal solutions of each 

algorithm is assessed based on the methodology of FEMA-P695.  

Three numerical examples including 3-, 6-, and 12-story steel moment frames are 

illustrated and the results are compared. In the case of 3-story steel moment frame, it is 

observed that BA dominates all the other algorithms however, the sesimic collapse safety of 

all the optimal designs are almost the same and they are of significant collapse capacity. In 

the example of 6-story steel moment frame, the results reveal that the optimal design found 

by BA is lighter than the other ones however, all of the optimal designs have almost the 

same significant collapse safety. For 12-story steel moment frame, ECBO converges to the 

best design in terms of optimal weight however, the optimal designs of all the algorithms 

have very close and acceptable seismic collapse capacity. 

Finally, it can be concluded that the performance-based optimal designs of regular low-

rise and mid-rise steel moment frame structures are of acceptable seismic collapse safety. 
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