
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  

Int. J. Optim. Civil Eng., 2020; 10(2):261-275 

 
 

 

A NEW APPROACH FOR EVALUATION OF SEISMIC SLOPE 

PERFORMANCE 

 
H. Fattahi *, † 

Department of Earth Sciences Engineering, Arak University of Technology, Arak, Iran 

 

ABSTRACT 
 

The evaluation of seismic slope performance during earthquakes is important, because the 

failure of slope (such as an earth dam, natural slope, or constructed earth embankment) can 

result in significant financial losses and human. It is important, therefore, to be able to 

forecast such displacements induced by earthquake. However, the traditional forecasting 

methods, such as empirical formulae, are inaccurate because most of them do not take into 

consideration all the relevant factors. In this paper, new intelligence method, namely 

relevance vector regression (RVR) optimized by dolphin echolocation (DE) and grey wolf 

optimizer (GWO) algorithms is introduced to forecast the earthquake induced displacements 

(EID) of slopes. The DE and GWO algorithms is combined with the RVR for determining 

the optimal value of its user-defined paramee RVR. The performances of the proposed 

predictive models were examined according to two performance indices, i.e., coefficient of 

determination (R2) and mean square error (MSE). The obtained results of this study 

indicated that the RVR-GWO model is a reliable method to forecast EID with a higher 

degree of accuracy (MSE= 0.0160 and R2= 0.9955). 
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1. INTRODUCTION 
 

Earthquake-induced sliding displacements are commonly used to assess the seismic 

performance of slopes. Earthquakes with magnitudes greater than 4.0 can cause landslides 

on very susceptible slopes, and earthquakes with magnitudes greater than 6.0 can generate 

widespread landsliding [1]. Whether a particular slope produces a landslide in an earthquake 

depends on details of slope configuration, material strength and ground motion [2]. Many 
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researchers attempt to find rapid and accurate ways to predict earthquake induced 

displacements (EID) of slopes. In this paper, the well–known research works are addressed. 

Lin, Whitman [3] evaluated the earthquake induced displacements of sliding blocks. Saygili, 

Rathje [4] proposed an empirical predictive models for earthquake-induced sliding 

displacements of slopes. Carro et al. [5] studied the application of predictive modeling 

techniques to landslides induced by earthquakes. Refice, Capolongo [6] evaluated the 

probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. 

Rathje, Saygili [7] evaluated the probabilistic modeling of earthquake-induced sliding 

displacements of natural slopes. Ambraseys, Srbulov [2] proposed a predictive  formulae  

and  graphs  for  co-seismic  and  post-seismic permanent  displacements  for  translational  

movements  which allow  the  assessment  of  the  vulnerability  of  natural  and  man-made  

slopes subjected  to  earthquakes. Miles, Keefer [8] studied the seismic slope-performance 

models using a regional case study. In this research compares four permanent displacement 

models based on Newmark's sliding-block analogy for assessing regional seismic slope-

performance. The models vary primarily by the groundmotion descriptor used to correlate 

with Newmark displacement. Bray, Travasarou [9] suggested a simplified procedure for 

estimating earthquake-induced deviatoric slope displacements. Jibson [10] evaluated the 

predicting earthquake-induced landslide displacements using Newmark's sliding block 

analysis. Ling, Leshchinsky [11] studied seismic performance of simple slopes. This 

research was concerned with an extension of a rotational limit equilibrium method for 

determining the permanent displacements of slopes under seismic excitation. In the proposed 

procedure, the sliding mass treated as a rigid rotating body defined by a log spiral trace. 

Permanent displacements obtained by double-integration of the equation of motion in a 

manner similar to Newmark's translational sliding block method. The seismic slope stability 

analysis is based on the rotational limit equilibrium approach. 

Although empirical or semi-empirical formulae is an alternative for forecasting of EID of 

slopes, most of these do not take all the relevant factors into consideration, resulting in 

inaccurate predictions. Lately, more intelligent methods, such as artificial neural networks 

(ANNs) and support vector regression (SVR) are successfully applied in non-linear 

modeling. However, it is difficult to determine the architecture for ANNs and stochastic 

events are present during the building of the model (i.e. given the same training set, the 

different solution is often found). In contrast, solution found based on SVR is global and 

deterministic. But it still has the trouble to determine the parameters (e.g. insensitivity ε and 

penalty weight C) and choose appropriate kernel function. Relevance vector regression 

(RVR) is a good competitor of SVR. It is a probabilistic model similar to the SVR, but 

where the training takes place in a Bayesian framework. The most impressive feature of this 

method is that it can offer good generalization performance while the inferred predictors are 

exceedingly sparse in that they contain relatively few non-zero weights associated with the 

corresponding basis functions [12]. Unlike in SVR framework where the basis functions 

must satisfy Mercer’s kernel theorem, in the RVR case there is no restriction on the basis 

functions [12,13]. Also, kernel width σ is the only parameter to be tuned in RVR model. 

Consequently the sparse RVR model could generalize better with very less computation time 

than SVR. In this study, the optimized RVR is proposed for indirect prediction of EID. The 

efficiency of the RVR model is tried to increase through electing the optimal value of its 

parameters. Optimization algorithms employed for improving RVR are dolphin echolocation 
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(DE) and grey wolf optimizer (GWO) algorithms. The DE and GWO algorithms are used to 

select the appropriate kernel parameters of their RVR model. The goodness of each hybrid 

model was evaluated by using the data available in the literature. Finally, a statistical error 

analysis has been performed on the modeling results to investigate the effectiveness of the 

proposed method. 

 

 

2. THEORY 
 

In this section, first the literature review relevant to the RVR is presented and then, there are 

some descriptions about the DE and GWO algorithms. 

 

2.1 Relevance vector regression (RVR) 

The RVR, presented by Tipping [12] is actually a special case of a Gaussian process. 

Unlike the SVR, the uncertainty of the output estimation value can be characterized. Also, 

the RVR has better sparseness than the SVR, which can reduce online prediction 

complexity. In addition, the RVR does not need to estimate the error/margin tradeoff 

parameter C, which can reduce the computational time and the kernel function, does not 

need to satisfy the Mercer condition. For those advantages of the RVR approach compared 

with the SVR, RVR received great attention and is successfully employed in regression 

problems of estimation [14,15]. 

In RVR approach, supposing the system is multiple-input-single-output, given a dataset 

of N input vectors with N corresponding scalar-valued target  
1

, ,
N

n n n
x t


 the output 

 1,...,
T

Nt t t can be expressed as the sum of an approximation vector  1( ),..., ( )
T

Ny y x y x

.
The targets are from the model with additive noise: 

 

 ,n nt y x w e   (1) 

 

where w is the weight vector and e is the random noise. The function y(x) is defined as 

follows: 
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dataset can be written as: 
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where  0 1, ,..., Nw w w w ,  1 2, ,..., Nt t t t  and   is the  1N N   design matrix. Here, 

RVR approach adopts a Bayesian perspective and constrains w and
2  by defining a prior 

probability distribution over the weights: 

 

   
2

1 1 2

( 1) 2
1 1

1
0, exp
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N N
i i

i i iN
i i

w
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 ( ) ,p gamma a b   (6) 

 

where b=
2 , a is an N+1 hyper-parameter, and gamma  ,a b is defined as 

 

  1 1 1

0
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Also, the posterior over weights can be considered through the Bayesian rule: 
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where the posterior covariance and mean are defined as follows: 

 

 
1

2 2 2T A


    (9) 

 
2 T t     (10) 

 

where  1 2, ,..., NA diag    . The likelihood distribution over the training targets given by 

Tipping [12]: 

 

  1 22 2 2 11
, ( , ) ( ) (2 ) exp

2

N Tp t p t w p w dw C t C t    
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where the covariance is given by 2 1 TC I A     . A detailed explanation of the RVR 

approach can be found in [12,16]. 

 

2.2 GWO algorithm 

GWO is a new population based algorithm which is proposed by Mirjalili et al. [17]. The GWO 
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inspired by grey wolves.  For simulating the leadership hierarchy in GWO, four groups are 

defined: delta, omega, alpha and beta. Also, the three main steps of hunting, attacking prey, 

encircling prey and searching for prey are simulated. This algorithm requires a factors number 

to be set, namely, beta, delta, initialize alpha, search agents number, maximum iterations 

number, the stopping criterion and sites selected number for neighborhood search. A detailed 

description of the GWO algorithm can be found in [17,18]. The flow chart of the GWO is 

illustrated in Fig. 1. In this study, the kernel parameter of Gaussian RBF kernel (
2

2

x
( , x ) exp

i j

RBF i j

x
K x



 
  
 
 

) is selected by GWO algorithm. 

 

 
Figure 1. Flow chart of the GWO algorithm.

  
2.3 DE algorithm 

DE mimics strategies utilized by dolphins for their hunting process. Dolphins produce a kind of 

voice called sonar to locate the target, doing this dolphin change sonar to modify the target and 

its location. This fact is mimicked here as the main feature of the new optimization method 

[19]. The DE algorithm [20], simulate the dolphin’s echolocation and limiting the search related 

by distance from the target. For defined this process more clearly, two phases are introduced: In 

the first phase, the algorithm evaluate all space search to form that to a general search space, so 

it should be looking for unexplored areas. This task is done by create a series of random 
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locations in the search space. In the second phase concentrate to evaluate the best places from 

the first phase. A detailed description of the DE algorithm can be found in [20]. Fig. 2 presents 

the flow chart of the DE algorithm. In this study, the kernel parameter of Gaussian RBF kernel (
2

2

x
( , x ) exp

i j

RBF i j

x
K x



 
  
 
 

) is selected by DE algorithm. 

 

 
Figure 2. Flow chart of the DE algorithm. 

 

2.4 RVR Optimized by GWO and DE Algorithms 

In the RVR, the GWO and DE algorithms are applied as an optimizer for the hyper-

parameters of RVR. Usually, the RVR is hybridized with the GWO and DE algorithms, 

where here, the prediction results achieved by RVR acts as a fitness function evaluation. The 

optimized value of RVR hyper-parameters can be obtained after a maximum iteration 

number has been reached. In this paper, the objective function is served by root mean 
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squared error (RMSE), where the lower the RMSE, the better the estimation accuracy. The 

procedure of optimizing the RVR variables with the GWO and DE algorithms is presented 

in Fig 3. 

 

 
Figure 3. Flowchart of the RVR- DE and RVR-GWO models for forecasting of EID.  

 

 

3. FORECASTING OF EID USING RVR-GWO AND RVR-DE MODELS 
 

To forecasting of EID, all relevant parameters should be determined, due to the fact that 

RVR-GWO and RVR-DE work based on given data and do not have previous knowledge 

about the subject of prediction. Following sections describe the inputs and output parameters 

and prediction of EID using RVR-GWO and RVR-DE models. 

 

3.1 Database information 

The main scope of this study is to implement the above methodology in the problem of 

the earthquake induced displacements prediction for slopes. Dataset applied in this study for 

determining the relationship among the set of input and output variables are gathered from 

open source literature [21]. A dataset that includes 45 case studies was employed in current 

study, while 36 cases (80%) were utilized for constructing the models and the remainder 

data points (9 cases) were utilized for models performance evaluation. The partial datasets in 

Table 1 contains data for 5 slopes, were u (displacement) was calculated through the use of 

Eqs. (12) to (14). The formulation of the problem in the current example case refers to the 

mapping of the parameters: height (H), unit specific weight (γ), cohesion (C), angle of 

internal friction (φ), significant duration of shaking (D5–95), maximum horizontal 



H. Fattahi 

 

268 

acceleration (kmax) to displacement (u). Partial dataset used in this study are presents in Table 

1. 

 

10

max 5 95 max

log 1.87 3.477
yku

k D k

 
  

 

 (12) 

 

where D5–95: significant duration of shaking, i.e., 5–95% normalized Arias intensity (sec), 

max

MHEA
K

g
  (MHEA: maximum horizontal equivalent acceleration, characterizes the 

amplitude of shaking within the sliding mass) and ky: yield acceleration of the slope [21]. 
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where M: earthquake magnitude and r: distance in km [21]. 

 
Table 1: Partial dataset were used for training and testing model [21]. 

Input parameters Output parameter 

H (m) ɣ (KN/m3) C (KPa) Φ (o) D5–95 kmax u (cm) 

12 22 8 35 7.9 0.24 0.25 

8 22 6 36 17.65 0.24 0.2 

6 21 5 35 7.9 0.24 0.07 

10 21 5 36 17.65 0.24 1.24 

8 22 6 36 7.9 0.24 0.094 

 

3.2 Performance Criterion 

In this paper, the difference between the output of the model and the real output is 
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considered as the error and represented in two ways, including mean squared error (MSE) 

and squared correlation coefficient (R2) were chosen to be the measure of accuracy [22-24]. 

Let tk be the actual value and ˆ
kt be the predicted value of the kth observation and n be the 

number of observations, then MSE and R2 could be defined, respectively, as follows: 
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(16) 

 

3.3 Algorithms Configuration  

In the proposed RVR-GWO and RVR-DE, many parameters need to be set carefully. In the 

DE algorithm, maximum iterations number=80, population number (number of 

locations)=25, effective radius=5, power: the degree of the curve=2.88 and PP1: the 

convergence factor of the first loop=0.095. Also in the GWO algorithm, maximum iterations 

number=50 and population number (search agent)=25. To obtain a good performance of the 

RVR model, the parameter is set differently in each operation process. At last, the one much 

better than the mean value is chosen in this paper. 

 

 

4. RESULTS AND DISCUSSIONS 
 

In this study, RVR-GWO and RVR-DE models were utilized to build a prediction model for 

the forecasting of EID from available data, using MATLAB environment. All data (45 

cases) were randomly divided into two subsets: 80% of the total data was allotted to training 

data of model construction and 20% of the total data was allocated for test data used to 

assess the reliability of the developed model. In these models, : H, γ, C, φ, D5–95 and kmax 

were utilized as the input parameters, while the EID was the output parameter.  

In data-driven system modeling methods, some pre-processing steps are commonly 

implemented prior to any calculations, to eliminate any outliers, missing values or bad data. 

This step ensures that the raw data retrieved from database is perfectly suitable for 

modeling. In order to softening the training procedure and improving the accuracy of 

prediction, all data samples are normalized to adapt to the interval [-1, 1] according to a 

linear mapping function. After modeling, a correlation between estimated values of EID by 

the RVR-GWO and RVR-DE models and measured values for training and testing phases is 

shown in Figs. 4 and 5. As shown in Figs. 4 and 5, the results of the RVR-GWO model in 

comparison with actual data show a good precision of the RVR-GWO model. 
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(a) 

 
(b) 

 
Figure 4: Correlation between measured and estimated EID  using RVR-GWO model for (a) 

training datasets, (b) testing datasets. 
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(a) 

 
(b) 

Figure 5: Correlation between measured and estimated EID using RVR-DE model for a) 

training datasets b) testing datasets 

 

Also, performance analysis of the RVR-GWO and RVR-DE models for predicting EID is 

shown in Table 2. As presented in Table 2, the RVR-GWO model with MSE= 0.0160 and 

R2= 0.9955 is found to be the best predictive model. 
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Table 2. Performance analysis of the RVR-GWO and RVR-DE models for forecasting of EID 

Description MSE R2 

RVR-GWO model 
Training 0.00044 0.9981 

Testing 0.01609 0.9955 

RVR-GWO model 
Training 0.00066 0.9996 

Testing 0.01578 0.9815 

 

As it was mentioned, it seems that RVR-GWO model is a more accurate method in 

forecasting of EID during testing and training steps. However, this strong statement needs 

more approvals. As a matter of fact, there is one question which is yet required to be 

answered in this section: whether different fractions of training and testing data may change 

the performance of the models? This question would require many attempts with different 

fractions of data to show how the performance of the models may change with different 

numbers of training and testing data .  
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Figure 6. Comparing the performance of RVR-GWO model with different fractions of 

training and testing data.  

 

 
Table 3 Comparing the performance of RVR-GWO model with different fractions of training 

and testing data.  

Training/testing 

 (%) 
Model 

MSE  

(Train) 

MSE 

(Test) 

R2 

(Train) 

R2 

(Test) 

90/10 RVR-GWO 0.00063 0.0249 0.9699 0.9826 

80/20 RVR- GWO 0.00044 0.0160 0.9981 0.9955 

70/30 RVR- GWO 0.00088 0.0182 0.9799 0.9777 

60/40 RVR- GWO 0.00114 0.0198 0.9699 0.9684 

 

According to Fig. 6 and Table 3, the MSE and R2 of RVR-GWO model (for 

training/testing=80/20) is less than that of the other models in almost all of the cases 

indicating that it can be a better choice for prediction process. It is worth mentioning that the 
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presented model was developed based upon the limited sets of data and cannot be 

generalized for all the slopes. However, it is open for more development if more data are 

available. 

 

 

5. CONCLUSION 
 

Displacements induced by earthquake are important, because displacements can be very 

large and result in severe damage to earth and earth supported structures. In this paper, a 

new approach namely RVR optimized by GWO and DE algorithms is proposed for 

predicting the EID. In our methodology, GWO and DE algorithms were applied as 

optimization tool for determining the optimal value of user defined parameters existing in 

formulation of RVR. The optimization implementation increases the performance of RVR 

model. The following conclusions were obtained:  

The RVR-GWO with MSE= 0.0160 and R2= 0.9955 is a reliable system modeling 

technique for forecasting of the EID with highly acceptable degree of accuracy and 

robustness. 

Application of evolutionary algorithms significantly increases the speed and accuracy of 

finding optimal values of kernel parameters. 

Implementation of the optimized RVR combined with evolutionary techniques can be 

applied as a powerful tool for modeling of non-linear problems encountered in civil and 

mining engineering. 
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