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ABSTRACT 
 

The optimal design of dome structures is a challenging task and therefore the computational 
performance of the currently available techniques needs improvement. This paper presents a 
combined algorithm, that is supported by the mixture of Charged System Search (CSS) and 
Teaching-Learning-based optimization (TLBO). Since the CSS algorithm features a strong 
exploration and may explore all unknown locations within the search space, it is an 
appropriate complement to enhance the optimization process by solving the weaknesses with 
using another optimization algorithm’s strong points. To enhance the exploitation ability of 
this algorithm, by adding two parts of Teachers phase and Student phase of TLBO algorithm 
to CSS, a method is obtained that is more efficient and faster than standard versions of these 
algorithms. In this paper, standard optimization methods and new hybrid method are tested 
on three kinds of dome structures, and the results show that the new algorithm is more 
efficient in comparison to their standard versions. 
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1. INTRODUCTION 
 

The optimization of structures is a challenging task for engineers and designers. Structural 
engineers have been persuaded to impose new challenges in the field of structural analysis 
and design. The appropriate use of various sections for elements of structures is the main 
goal of designers to make an economical and reliable design. The size, topology and shape 
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efficiency of structural components are the foremost major issues for designers to scale back 
the entire cost of the building. Aim to attenuate the load of the project by fulfilling the 
planning constraints by new methods of optimization algorithms. 

Numerous meta-heuristic algorithms have been developed for finding optimum design of 
structures, that have already been based on the concepts of certain influence of physics and 
biology. Based on the principles used, these equations are divided into various categories. 
There are several well-known algorithms that are created on the idea of certain influence of 
nature within the "biological ecology and reproduction" class, like the Genetic Algorithm 
(GA) [1-10]. On the other hand, Teaching–Learning-Based Optimization (TLBO) works on 
the impact of a teacher's influence on learners. Like other natural-inspired algorithms, TLBO 
is additionally a population-based approach and uses a population of solutions to push towards 
a worldwide solution. The population is understood to be a community of learners or a 
category of learners. The TLBO process is split into two parts: the primary section consists of 
the 'Teachers Phase' and therefore the second section consists of the 'Learners Phase.' 'Teacher 
Phase' means learning from an instructor and 'Learner Phase' means learning by interaction 
between learners [11-13]. Other meta-heuristic optimization technique which can be used for 
optimal design of large scale structures as domes are [14-22]. 

Here we have used Charged System Search (CSS) which relies on the principles of 
Coulomb and Gauss from electrical phenomena and Newtonian Mechanics' regulations of 
movement. equations from electrical physics and quantum mechanics [23-25]. The CSS 
algorithm determines an amount of solutions, each of which is referred to charged particle 
(CP) and expected to act as charged scope and each (CP) can impose an electrical influence 
on the other elements (CPs). Such influences will also change the direction of all other CPs 
per the Newton’s 2nd law and following that the latest positions of the CPs have been 
decided.  

This present work introduces a hybrid algorithm for optimum design of dome structures. 
In this paper, a contemporary algorithm is employed that blends CSS with TLBO as a 
modified charged system search. The combination is performed in order to increase the 
efficiency of the CSS by maintaining positive characteristics of TLBO as referred to as 
'Teachers Phase' and 'Learner Phase'.  

 
 
2. FORMULATION OF THE DOME DESIGN OPTIMIZATION PROBLEM 
 

2.1 Optimum configuration of domes 

Discovering an optimal cross section in domes, is the key to style an optimum dome 
structure. By optimum design in rise of the crown part and therefore the rings beneath, it is 
possible to define loading parameters. An appropriate model to point out the target function 
can be: 
 

Find               𝑋 ൌ ሼ𝐴௜ , ℎ,𝑁௥ ,   𝑖 ൌ 1 ∶ 𝑛𝑔ሽ (1) 
To minimize       𝑊ሺ𝑋ሻ ൌ ∑ 𝛾௜  .𝐴௜ .∑ 𝐿௝

௡௜
௝ୀଵ

௡௚
௜ୀଵ  (2) 

 
Where 𝑋 is the design vector representing all structural parameters; 𝐴௜ is the element 
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cross section of the design table of the 𝑖th quantity that is chosen from steel pipe categories 
of LRFD-AISC [26]. 𝑁௥ is the total number of rings; 𝑛𝑔 represents the total count of size 
categories; 𝑊ሺ𝑋ሻ is the weight of the design; 𝑛𝑖 is the total number of elements in group 𝑖;𝐿௝ 
is the length of element 𝑗; ℎ is the rise of the dome and 𝛾 ௜ is the material mass density. 
𝐴௜ shows the effect of cross-section on the load of the dome, and therefore the choice of 
various values for 𝑁௥ also can change the dimensions of all other variables. The 
specification of the LRFD [26] and also the restrictions of the drift are known to be 
constraints for these structures. Constraints are often defined as: 

Displacement constraint 
 

𝛿௜ ൑ 𝛿௜
௠௔௫    𝑖 ൌ 1,2, …, nn (3) 

 
Constraint on each Interaction Formula 
 

For 
௉ೠ
థ೎௉೙

൏ 0.02           
௉ೠ

ଶథ೎௉೙
൅ ሺ ெೠೣ

థ್ெ೙ೣ
൅

ெೠ೤

థ್ெ೙೤
ሻ ൑ 1 (4) 

For 
௉ೠ
థ೎௉೙

൒ 0.02           
௉ೠ
థ೎௉೙

൅ ଼

ଽ
ሺ ெೠೣ

థ್ெ೙ೣ
൅

ெೠ೤

థ್ெ೙೤
ሻ ൑ 1 (5) 

 
Shear constraint 
 

𝑉௨ ൑ ∅௩𝑉௡ (6) 
 

where the 𝛿௜ is the displacement of the node 𝑖 ; 𝛿௜
௠௔௫ is an allowed displacement of the 

𝑖th node; 𝑛𝑛 is the total number of nodes; 𝜙௖ is the resistance factor; 𝑃௨ is the necessary 
strength; 𝑃௡ is the nominal axial force;  𝑀௨௫  is the required flexural strength in X 
direction and 𝑀௨௬ is the same factor for Y direction; 𝜙௕ and is the factor of decrease of 
flexural resistance. 𝑉௨ is the factored service load shear; 𝑉௡ is the nominal shear strength 
and 𝜙௩ represents the resistance factor for shear. 

 
 

3. COMBINED METHODS 
 

3.1 Charged search system 
The Charged System Search (CSS) algorithm relies on the principles of Coulomb and Gauss 
on electrical phenomena and Newtonian Mechanics' regulations of movement. This 
algorithm is often referred to as a multi-agent strategy, during which each agent may be a 
Charged Particle (CP). Every CP would be considered to become a charged sphere with 
radius a providing a consistent quantity charge density and is equal to 
 

𝑞௜ ൌ
𝑓𝑖𝑡ሺ𝑖ሻ െ 𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡
𝑓𝑖𝑡𝑏𝑒𝑠𝑡 െ 𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡

𝑖 ൌ 1,2, … ,𝑁 (7) 

 
Where fitbest and fitworst are ideal and the worst of all the particles; fitሺiሻ symbolizes 
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the fitness of the agent i and N denotes the total number of CPs. The CPs could impose 
electrical influences on the others. The type of influences is attractive, and its magnitude for 
the CP situated inside the sphere is equivalent to the gap distance between the CPs, and for 
the CP situated beyond the sphere, it is inversely adequate to the square of the gap distance 
between the particles. 

 

𝐹𝑗 ൌ 𝑞௜ ෍ሺ
𝑞௜
𝑎ଷ

௜,௜ஷ௝

𝑟௜௝ . 𝑖ଵ ൅
𝑞௜
𝑟௜௝ଶ

. 𝑖ଶሻ𝑃௜௝൫𝑋௜ െ 𝑋௝൯ 

ൾ
𝑗 ൌ 1,2, … ,𝑁

௜భୀଵ   ௜మୀ଴⟺௥೔ೕழ௔
௜భୀ଴   ௜మୀଵ⟺௥೔ೕ≫௔

 

(8) 

 
in which 𝐹௝  is the resulting reaction force on the CP;  𝑟௜௝  is the separation distance 
between the two charged particles described as follows: 

 

𝑟௜௝ ൌ
||𝑋௜ െ 𝑋௝||

อቤ
൫𝑋௜ െ 𝑋௝൯

2 െ 𝑋௕௘௦௧ቤอ ൅ 𝜀

 
(9) 

 
in which 𝑋௜ and 𝑋௝ are the positions of the 𝑖 th and the 𝑗 th CPs, respectively; from which 
𝑋௕௘௦௧ is the position of the best current CP, and where ε is a small positive value. The prior 
positions of the CPs are randomly determined within the search space and therefore the 
initial velocity of the charged particles is assumed to be zero. Here, 𝑝௜௝ defines the 
probability of every CP starting to move towards the opposite CPs as 

 

ቐ1  
𝑓𝑖𝑡ሺ𝑖ሻ െ 𝑓𝑖𝑡𝑏𝑒𝑠𝑡
𝑓𝑖𝑡ሺ𝑗ሻ െ 𝑓𝑖𝑡ሺ𝑖ሻ

 ൐ 𝑟𝑎𝑛𝑑 𝑉 𝑓𝑖𝑡 ሺ𝑗ሻ ൐ 𝑓𝑖𝑡ሺ𝑖ሻ

0                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

 
The resulting forces and therefore the laws of motion decide the new position of the CPs. 

Now, each CP continues to move towards its new position as a result of the action of 
resultant forces and its previous velocity. 

 

𝑋௝,௡௘௪ ൌ 𝑟𝑎𝑛𝑑௝ଵ. 𝑘௔.
𝐹௝
𝑚௝

.Δ𝑡ଶ ൅ 𝑟𝑎𝑛𝑑௝ଶ.𝑘௩ .𝑉௝,௢௟ௗ.Δ𝑡 ൅ 𝑋௝,௢௟ௗ (11) 

𝑉௝,௡௘௪ ൌ
𝑋௝,௡௘௪ െ 𝑋௝,௢௟ௗ

Δ𝑡
 (12) 

 
Where 𝑘௔is the ratio of acceleration; 𝑘௩ is the ratio of velocity for regulating the effect of 

the previous velocity; While 𝑟𝑎𝑛𝑑௝ଵand 𝑟𝑎𝑛𝑑௝ଶ are two random numbers, and 1 determines 
the rate of selecting a value in the new vector from the historic values stored in the CM, and 
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(1-CMCR) sets the rate of randomly selecting one value from the potential value range. The 
pitch adjustment operation is followed only after the value of the CM is selected. The value 
(1-PAR) sets the pace at which nothing is achieved. Here, "w.p." means "with probability".' 
For further details, the reader may refer to Kaveh and Talatahari [24, 25]. 

To have a discreet result, a rounding function is used which modify the magnitude of the 
outcome to the closest available discrete value as follows 

 

𝑋௝,௡௘௪ ൌ 𝑅𝑜𝑢𝑛𝑑ሺ𝑟𝑎𝑛𝑑௝ଵ. 𝑘௔ .
𝐹௝
𝑚௝

.Δ𝑡ଶ ൅ 𝑟𝑎𝑛𝑑௝ଶ. 𝑘௩ .𝑉௝,௢௟ௗ .Δ𝑡 ൅ 𝑋௝,௢௟ௗሻ (13) 

 
3.2 Teaching–learning-based optimization (TLBO) 

Teaching – Learning-Based Optimization (TLBO) is a nature-based algorithm that has its 
own ability to properly tackle various optimization problems and it is proposed to supply an 
answer for continuous nonlinear functions with less calculation time and practical method. 
The TLBO procedure is attributed to the influence of an instructor's impact on the output of 
pupils within the class. During this case, performance is analyzed in terms of exam grades. 
The efficiency of the teacher affects the outcomes of the pupils. It is evident that 
knowledgeable teacher train learner in such how that they will have better performance in 
terms of their marks or test scores. 
 

 
Figure 1. Distribution of marks received from pupils taught by two separate teachers 

 

 
Figure 2. Model for the distribution of the marks obtained by a group of scholars 

The standard pattern of the gathered marks was assumed, however in practical terms it 
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can have skewness. Fig. 1 indicates the range of the marks received by the pupils in two 
separate classes assessed by the professors. Curves 1 and a couple of are the marks acquired 
by the scholars trained by the teachers T1 and T2, respectively. The traditional distribution 
research is described as 

 

𝑓ሺ𝑥ሻ ൌ
1

𝜎√2𝜋
𝑒
ିሺ௫ିఓሻమ

ଶఙమ  (14) 

 
in which 𝜎ଶ is the variance, μ is the mean, and 𝑥 is the amount for which the normal 

distribution function is required. 
The key difference between the two tests is their mean (𝑀ଶ for Curve-2 and 𝑀ଵ for 

Curve-1). A qualified teacher generates a higher mean for test scores. It can be seen from 
Fig. 2 that curve-3 is better than curve-1 and so it can be said that teacher 𝑇ଶ is better than 
teacher 𝑇ଵ in teaching. The teacher seeks to share his or her knowledge among the pupils, 
which successively would improve the extent of data of the whole class and permit the 
scholars to develop high marks or scores. Fig. 2, which indicates the graph for the marks 
scored for the pupils in the curve class-A getting a mean 𝑀஺. The instructor is perceived to 
be the most knowledgeable member of the society, such that the best learner is imitated as 
an instructor, as shown by 𝑇஺ in Fig. 1. Teacher 𝑇஺ tries to improve the level of students from 
𝑀஺ to 𝑀஻, at which point students require a new instructor of top quality than themselves. in 
this case the new teacher is 𝑇஻. There will then be a new curve-B with the new 𝑇஻ instructor. 

Fig. 3 showed that the TLBO algorithm divided into two sections. The first part consists 
of the 'Teacher Stage' and the second section consists of the 'Pupil Stage'. 



OPTIMUM DESIGN OF SINGLE-LAYER DOME STRUCTURES USING 

 

503 

 
Figure 3. Flowchart of the TLBO 

 
Teacher's stage 
A successful teacher is the one who carries his/her learners up to his/her level of data. Yet 

it is impossible actually, so an instructor can only shift the category average to a particular 
degree counting on the category capacity. 𝑇௜ is going to try to move 𝑀௜ to his own stage of 
development, meanwhile the new mean is going to be 𝑇௜ appointed as 𝑀௡௘௪. Like the one 
shown in Fig. 1, the mean of a class increases from 𝑀஺ to 𝑀஻, usually depends on a qualified 
teacher. The solution is revised on the basis of the gap between both the existing and the 
new means as 

 
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑒_𝑀𝑒𝑎𝑛௜ ൌ 𝑟௜ሺ𝑀௡௘௪ െ 𝑇ி𝑀௜ (15) 

 
Where 𝑇ி is a teaching factor that affects the mean value to be changed, while 𝑟௜ is a 

random number in the range [0 , 1] also The value of 𝑇ி can be 1 or 2, which is perhaps a 
heuristic step and determined arbitrarily with the same probability as 𝑇ி = Round[1 + 
rand(0, 1) {2 − 1}]. 

This discrepancy alters the existing solution to the following equation: 
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𝑋௡௘௪,௜ ൌ 𝑋௢௟ௗ,௜ ൅ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑀𝑒𝑎𝑛௜ (16) 
 
Pupil’s stage 
Pupils may increase their knowledge in two ways: first, through feedback from their 

teacher, and second, from experiences between themselves. A student learns something 
different if the opposite student has more experience than he or she does. The pseudo-
code of this method shall be described as Fig. 4 

 
For i=1 : 𝑃௡    (17) 
Pupil 𝑋௜ and 𝑋௝ selected randomly where 𝑖 ് 𝑗 
If f(𝑋௜ሻ ൏ 𝑓ሺ𝑋௝ሻ 
𝑋௡௘௪,௜ ൌ 𝑋௢௟ௗ,௜ ൅ 𝑟௜ሺ𝑋௜ െ 𝑋௝ሻ   (18) 
Else 
𝑋௡௘௪,௜ ൌ 𝑋௢௟ௗ,௜ ൅ 𝑟௜ሺ𝑋௝ െ 𝑋௜ሻ   (19) 
End if 
End for 
Accept 𝑋௡௘௪ if it gives a better output 

Figure 4. Pseudo-code of the pupil’s stage 
 

3.3 Hybrid TLBO and CSS algorithm 

CSS and TLBO algorithms both have the initialization section in their algorithms. The key 
point within the Charged System Search (CSS) algorithm is to know the amount of CPs, the 
loaded memory size (CMS), the memory considering rate (CMCR) and therefore the pitch 
adjustment rate (PAR). Where we analyze CPs vectors and find the displacement of every 
node and stress in each member, then if the constraints are between the allowable limits, 
penalty sets adequate to zero. CSS is perfectly capable of exploration for the property. In 
order to have an improved algorithm, beside an excellent exploration there's a requirement 
to possess an accurate and efficient way of exploitation too. During this case, ‘Teachers 
Phase’ and ‘Pupil Phase’ of TLBO mixed with CSS to possess both great exploration and 
exploitation together. After identifying the right student individually, the TLBO algorithm 
teaches the remainder of the scholars through using their information to assist the category. 
Then, in next stage, students will aim to enhance their level by sharing knowledge. for every 
step, the trainer must change their position counting on the space to the measured class 
average. a private pupil often changes his/her place supported his/her gap from the category 
to a randomly chosen student. Through correcting the shortcomings of both algorithms by 
combining them, a replacement algorithm is developed that has the power to look sort of a 
CSS and therefore the ability to take advantage of sort of a TLBO, and productivity is far 
faster and more efficient than other methods. This new algorithm will lead to better results in 
a shorter time. The steps of the new hybrid algorithm are as follows: 

Step 1: Initialize optimization problem and algorithm parameters required as number of 
CPs, CMS, CMCR and PAR, plus CP ranking in the second step of initialization and making 
the CM as population of students. 

Step 2: Searching for a better CP in each section and choose it as a teacher, mentioned in 
Eq. (15) ‘teachers’ phase’. 
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Step 3: Adopt (Teacher CP) on the basis of best approach. 
Step 4: Choose two random CPs (𝑋௜ and 𝑋௝ as Eq. (17)) in the range of teacher CP as Eq. 

(20). 
Step 5: Choose the best of 𝑋௜ or 𝑋௝ and apply it in CM 
 

𝑋௜ ,𝑋௝ ∈ 𝐵 
𝑇𝑒𝑎𝑐ℎ𝑒𝑟 𝐶𝑃 െ 𝜀 ൏ 𝐵 ൏ 𝑇𝑒𝑎𝑐ℎ𝑒𝑟 𝐶𝑃 ൅ 𝜀 

(20) 

 
where 𝑋௜ and 𝑋௝ are best student CPs randomly selected from the set of B that is a collection 
of CPs equal or better than teacher CP. The flowchart of the hybrid algorithm is shown in 
Fig. 5. 
 

 
Figure 5. The flowchart of the hybrid algorithm 

 
 

4. DESIGN EXAMPLES 
 
The behavior of the domes is non - linear due to the change in geometry under external 
loads. Existence of geometric non-linearity requires a push research and analysis. 
Additionally, an overall stability test is required during the study to make sure that the 
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system does not actually lose its payload capacity due to instability [1]. Information of the 
nonlinear stiffness matrix of the space member are given in Majid [27] and Ekhande et al. 
[28] Furthermore, geometric non - linearity is also included in this analysis in order to 
provide a practical treatment of the dome. 
 

 
(a) 3D view           (b) Plan 

 

 
(c) Elevation view 

Figure 6. A four ring network dome 
 

 
(a) 3D view          (b) Plan view 
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(c) Elevation view 

Figure 7. A four-ring Schwedler dome 
 
The network, the Schwedler and therefore the Lamella domes are being studied here. 

Network domes with rib, diagonal and ring elements as shown in Fig. 6. The gaps between 
the rings on the meridian line of those domes are usually rendered to be an equivalent. There 
are 12 joints on the odd rings, and therefore the same rings have 24 nodes. The first joint of 
the first ring is on the circumference of the dome, which correlates with the x-axis, and all 
the first joints of the rings are situated at the points of intersection of such rings and the x-
axis. The Schwedler domes, one among the foremost common sorts of braced domes, 
consists of meridional ribs connected to a series of horizontal polygonal rings. In plan to 
stiffen the resulting dome, each trapezium formed by intersecting meridional ribs with 
horizontal rings is separated into two triangles by inserting a diagonal part. As shown in Fig. 
7 for a standard Schwedler dome design, the amount of nodes for the Schwedler domes for 
every ring is taken into account to be constant and is adequate to 12 during this article. The 
gaps between the dome rings on the meridian line are generally of equal length. The Lamella 
dome includes diagonals extending from the crown right down to the equator of the dome, 
both clockwise and anticlockwise directions, and has horizontal rings, but has no meridian 
ribs. Similar to the Schwedler domes, the amount of nodes in each ring is taken as 12, 
whereas, in contrast to the 2 previous kinds, just the primary joints of the odd rings are 
situated at the points of intersection of the ring and therefore the x-axis, and therefore the 
first nodes of the evenly numbered rings are achieved by an anti-clockwise rotation of the 
nodes along the z-axis by 36 °. Fig. 8 illustrates a typical dome of lamella. The gathering of 
members is meant in such how that the rib members for every consecutive pair of rings 
relate to the same group, the diagonal members relate to an equivalent group, and therefore 
the members on each ring form a separate group. The overall number of groups for the 
network and the Schwedler domes is therefore equal to 3𝑁௥ െ 2 of lamella domes, this 
number is 2𝑁௥ െ 1, because there are no meridian ribs present. The group of various 
individuals is being used as the number of agents for all algorithms. Due to the continuous 
nature of the algorithms, a rounding function is used to develop separable or integer values. 
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(a) 3D view         (b) Plan view 

 
(c) Elevation view 

Figure 8. A four-ring Lamella dome 
 
The first example is a network dome. The histories of the best-run for different technique 

are shown in Fig. 9, and therefore the minimum results obtained by the algorithms are 
shown in Table 1. The optimum design for this dome is obtained using new method. The 
weight of the hybrid algorithm design is equal to 6,540 kg which is 8.68% and 5.96% lighter 
than the designs obtained by the TLBO and the CSS, respectively. 

The Schwedler dome is that the second example. The lightest weight design is attained by 
the new algorithm, and therefore the optimum result obtained by the charged system search 
algorithm is that the runner-up as compared with the TLBO. The simplest weight of the 
Schwedler dome is adequate to 4,950 kg which is 13.21% and 11.96% lighter than the 
opposite designs. Table 2 summarizes the obtained optimum results. Similar the previous 
example, the new method has the fastest convergence rate and the TLBO has the slowest one 
as shown in Fig. 10. 

The last structure investigated in this study is a lamella dome. The optimum design is 
obtained by the hybrid algorithm as 5777 kg. The CSS found the second weight which is 
2.87% heavier than the results of the new method. Almost like the pervious examples, 
TLBO provide the heaviest result. Table 3 and Fig. 11 show the simplest results with the 
corresponding weight and therefore the convergence history of those algorithms for the 
lamella domes. When the number of rings increases, the load of all kinds of domes increase 
and thus to possess an optimal dome weight, the amount of rings should be chosen as small 
as possible. Within the case studies described above, the optimum number of rings obtained 
by algorithms is three. 
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Table 1: Optimum designs of the network dome 

Network dome 
Optimum sections 

Group Number CSS  TLBO New Method 

1 PIPST (8) PIPST (8) PIPST (8) 
2 PIPST (3) PIPST (3) PIPST (3) 
3 PIPST (3) PIPEST (31/2)  PIPST (31/2) 
4 PIPST (3) PIPST (31/2)  PIPST (21/2) 
5 PIPST (31/2)  PIPST (31/2)  PIPST (3) 
6 PIPEST (5) PIPDEST (4) PIPEST (5) 
7 PIPDEST (2) PIPST (4) PIPST (31/2) 

Height(m) 6.5 5.5 6.25 
Max(𝛿௜)(mm) 27.44 27.13 27.95 
Max Strength 0.93 0.96 0.96 

Ratio    
Weight (kg) 6,955 7,162 6,540 

 
Table 2: Optimum designs of the Schwedler dome 

Schwedler	dome	
Optimum	sections	

Group Number CSS  TLBO New Method 

1 PIPDEST (4) PIPDEST (5) PIPST (8) 
2 PIPEST (1/2)  PIPST (1/2) PIPST (1/2) 
3 PIPST (4) PIPST (4) PIPST (4) 
4 PIPST (1/2) PIPEST (1/2) PIPST (3/4) 
5 PIPST (4) PIPST (4) PIPST (31/2) 
6 PIPEST (5) PIPEST (5) PIPDEST (4) 

7 PIPST (6) PIPST (4) PIPEST (3) 
Height (m) 7.75 7.25 6.00 

Max(𝛿௜) (mm) 28.11 26.64 28.00 
Max Strength 1.00 0.96 0.97 

Ratio    
Weight (kg) 5,623 5,704 4,950 

 
Table 3: Optimum designs of the lamella dome 

Lamella	Dome	

Optimum	sections	
Group Number CSS  TLBO Present Method 

1 PIPST (8) PIPST (8) PIPST (3) 
2 PIPST (31/2)  PIPST (3) PIPST (3) 
3 PIPST (3) PIPEST (3) PIPST (3) 
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4 PIPDEST (4) PIPEST (6) PIPDEST (4) 
5 PIPST (31/2)  PIPEST (31/2)  PIPST (31/2) 

Height (m) 6.25 5.75 6.50 
Max (𝛿௜) (mm) 27.85 27.35 27.78 
Max Strength 0.989 0.932 1.00 

Ratio    
Weight (kg) 5,948 6,404 5,777 

 

 
Figure 9. The convergence histories for the network dome 

 

 
Figure 10. The convergence histories for the Schwedler dome 
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Figure 11. The convergence histories for the Lamella dome 

 
 

5. CONCLUDING REMARKS 
 
For dome structures due to the existence of large search spaces, an outsized number of 
optimization constraints should be handled, considering the fact that these issues are very 
difficult due to the computational complexity of the dome structure analysis. Recently, 
various researchers have used combined optimization algorithms to overcome these 
difficulties. The present hybrid algorithm overcomes the optimization problems of dome 
structures, by combining the CSS and TLBO algorithms to eliminate the operational 
weakness of the CSS algorithm by adding two ‘Teachers phase’ and ‘Pupil phase’ to obtain 
efficient results and to scale back computation time. In this paper, three types of dome 
designs are optimized by three algorithms, consisting of CSS, TLBO and the new hybrid 
method. The analysis results during this comparative process indicate that the new method 
provides a better and simpler design in less time than the standard algorithms. 
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