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ABSTRACT 
 

The arithmetic optimization algorithm (AOA) is a recently developed metaheuristic 

optimization algorithm that simulates the distribution characteristics of the four basic 

arithmetic operations (i.e., addition, subtraction, multiplication, and division) and has been 

successfully applied to solve some optimization problems. However, the AOA suffers from 

poor exploration and prematurely converges to non-optimal solutions, especially when 

dealing with multi-dimensional optimization problems. More recently, in order to overcome 

the shortcomings of the original AOA, an improved version of AOA, named IAOA, has 

been proposed and successfully applied to discrete structural optimization problems. 

Compared to the original AOA, two major improvements have been made in IAOA: (1) The 

original formulation of the AOA is modified to enhance the exploration and exploitation 

capabilities; (2) The IAOA requires fewer algorithm-specific parameters compared with the 

original AOA, which makes it easy to be implemented. In this paper, IAOA is applied to the 

optimal design of large-scale dome-like truss structures with multiple frequency constraints. 

To the best of our knowledge, this is the first time that IAOA is applied to structural 

optimization problems with frequency constraints. Three benchmark dome-shaped truss 

optimization problems with frequency constraints are investigated to demonstrate the 

efficiency and robustness of the IAOA. Experimental results indicate that IAOA 

significantly outperforms the original AOA and achieves results comparable or superior to 

other state-of-the-art algorithms.  
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1. INTRODUCTION 
 

In free vibration of a structure, natural frequencies are the fundamental characteristics 

affecting the dynamic behavior of the structure [1]. As an example, the dynamic response of 

a low frequency vibration system is mainly a function of the fundamental natural frequency 

of the system [2]. In such cases, the dynamic characteristics of the structure can be 

significantly improved by manipulating the selected frequency. This aim can be achieved 

through the optimal design of structures with frequency constraints. As a result, structural 

optimization with frequency constraints makes it possible to manipulate the dynamic 

characteristics in a variety of ways. For example, in designing a spaceship, it is necessary to 

impose constraints on several of the lowest natural frequencies of the vehicle to prescribed 

ranges natural in order to avoid resonance phenomenon.  

Optimum design of structures considering frequency constraints has attracted the 

attention of many researchers since the 1980s. Bellagamba and Yang [3] applied a nonlinear 

programming procedure to the minimum mass design of truss structures under static thermal 

and mechanical loads considering various constraints, including fundamental natural 

frequency and local buckling. Grandhi and Venkayya [2] employed an optimality criterion 

method based on uniform Lagrangian density for the minimum weight design of structures 

with multiple frequency constraints. Tong and Liu [4] proposed a dynamically constrained 

optimization procedure for the optimal design of truss structures with discrete design 

variables under dynamic constraints. Sedaghati et al. [5] used the integrated force method as 

an analyzer to optimize both truss and beam structures under frequency constraints. Lingyun 

et al. [6] proposed a niche hybrid genetic algorithm (NHGA) for solving shape and size 

optimization of truss structures with multiple frequency constraints. Gomes [7] employed a 

particle swarm optimization (PSO) algorithm for size and shape optimization of truss 

structures taking into account frequency constraints. Kaveh and Zolghadr [8] proposed a 

hybridization of the charged system search (CSS) and the big bang-big crunch (BB-BC) 

algorithms with trap recognition capability and applied it to the optimization of truss 

structures with frequency constraints. Khatibnia and Naseralavi [1] introduced the 

orthogonal multi-gravitational search algorithm (OMGSA) to solve size and shape truss 

optimization problems with frequency constraints. Kaveh and Ilchi Ghazaan [9] performed 

the optimal design of large-scale dome structures with multiple natural frequency 

constraints. Ho-Huu et al. [10] proposed a novel differential evolution (DE) for size and 

shape optimization of truss structures with frequency constraints. Kaveh and Zolghadr [11] 

utilized the cyclical parthenogenesis algorithm (CPA) for optimal design of cyclically 

symmetric trusses with frequency constraints. Lieu et al. [12] proposed a hybridization of 

the differential evolution (DE) algorithm and the firefly algorithm (FA) for shape and size 

optimization of truss structures under multiple frequency constraints.  

Frequency-constrained optimization problems are well-known as highly nonlinear, non-

convex, and multimodal optimization problems with respect to the design variables [13]. 

The most common difficulty with the frequency-constrained optimization problems is the 

switching of vibration modes due to structural size and shape modifications, which may 

cause convergence difficulties [14]. As a result, classical methods of optimization based on 

gradients may not be effective to solve this type of optimization problems because these 

methods require the gradient information of the frequency with respect to the design 
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variables [6]. Thus, metaheuristic optimization algorithms can be regarded as appropriate 

alternatives. 

Metaheuristic optimization algorithms represent a branch of approximate optimization 

techniques that have been one of the most active fields of research in computer science over 

the last years [15]. These techniques have the capability to find optimal or near-optimal 

solutions to tough optimization problems and even NP-hard problems within a reasonable 

computational time [16]. Metaheuristics have found a wide range of engineering 

applications because they: (1) are easy to design and implement; (2) use no gradient 

information during the optimization process; and (3) are applicable to a large variety of 

optimization problems.  

Over the past three decades, numerous metaheuristics have been developed, most of 

which are nature-inspired. Nature-inspired metaheuristic algorithms can be categorized into 

four main groups (see Fig. 1): evolution-based, physics-based, swarm-based, and human-

based [17]. Evolution-based algorithms imitate the concepts of biological evolution. Some 

of the most popular evolution-based algorithms are genetic algorithm (GA) [18], evolution 

strategy (ES) [19], genetic programming (GP) [20], evolutionary programming (EP) [21], 

memetic algorithm (MA) [22], and differential evolution (DE) [23]. Physics-based 

algorithms are inspired by the physical laws of nature. Some of the most well-known 

physics-based algorithms are gravitational search algorithm (GSA) [24], charged system 

search (CSS) [25], big bang-big crunch (BB-BC) [26], ray optimization (RO) [27], and 

water evaporation optimization (WEO) [28]. Swarm-based algorithms form another group of 

nature-inspired algorithms that are based on the social behavior of groups of animals. Some 

of the most popular swarm-based metaheuristic algorithms are artificial bee colony (ABC) 

[29], particle swarm optimization (PSO) [30], ant colony optimization (ACO) [31], and 

cuckoo search (CS) [32]. The last group of nature-inspired algorithms is human-based 

metaheuristics that mimic the human behaviors and characteristics. Harmony Search (HS) 

mimics the improvisation of music players [33]. League championship algorithm (LCA) 

simulates the competition of sport teams in a sport league [34]. Teaching-learning-based 

optimization (TLBO) algorithm is developed based on the philosophy of the teaching-

learning process [35]. Imperialist competitive algorithm (ICA) is established inspired by the 

policy of extending a country’s beyond its own boundaries [36]. Dynastic optimization 

algorithm (DOA) is developed by using social behavior in human dynasties [37]. Interior 

search algorithm (ISA) is established inspired by interior design and decoration [38].  

The arithmetic optimization algorithm (AOA) is a newly proposed metaheuristic 

algorithm inspired by the four basic arithmetic operations of subtraction, addition, 

multiplication, and division [39]. Up to now, the AOA has been employed for solving some 

real-world optimization problems, including structural damage detection [40], maximum 

power point tracking [41], model identification [42], image segmentation [43], etc. 

However, it has been found that the original AOA suffers from poor exploration and is prone 

to trap into local optima [42-43]. Recently, in order to overcome the drawbacks of the 

original AOA, an improved variant of the original AOA, called improved AOA (IAOA), has 

been proposed and successfully applied to discrete structural optimization problems [44]. 

The main contributions of IAOA, as compared with the original AOA, are as follows [44]: 

(1) Both the exploration and exploitation capabilities of the original AOA are enhanced to 

overcome its drawbacks. (2) The IAOA requires less algorithm-specific parameters 
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compared to the original AOA, which makes it easy to be applied [44]. In this research, 

IAOA is applied to solve structural optimization problems with multiple frequency 

constraints. To our knowledge, both the original AOA are IAOA are still not applied to 

structural optimization with frequency constraints. The performance of the IAOA is 

demonstrated through three benchmark examples of frequency-constrained structural 

optimization problems. The results achieved by the AOA and IAOA are compared with each 

other and with those of some other state-of-the-art optimization methods existing in the 

literature.  

The rest of this paper is organized as follows: In Section 2.1, the mathematical 

formulation of the size optimization problem of truss structures with multiple frequency 

constraints is presented. Section 2.2 provides a detailed discussion of the original AOA. In 

Section 2.3, the improved arithmetic optimization algorithm (IAOA) is reviewed in detail. In 

Section 3, three large-scale numerical examples are investigated and the optimization results 

are discussed. Finally, Section 4 draws the concluding remarks.  

 

 
Figure 1. Classification of nature-inspired metaheuristic algorithms [44] 

 

 

2. MATERIALS AND METHODS 
 

2.1 Problem statement 

In the case of truss sizing optimization with multiple frequency constraints, the objective is 

to minimize the weight of the structure while satisfying multiple constraints on natural 

frequencies [45]. For this purpose, the cross-sectional areas of members are considered as 

design variables. On the other hand, the layout of the structure is not changed during the 

design process. The problem can therefore be mathematically formulated as follows [46-47]:  

 

Find: 𝑨 = {𝐴1, 𝐴2, ⋯ , 𝐴𝑑} (1) 
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to minimize: 𝑓(𝑨) = ∑𝜌𝑖𝐴𝑖𝐿𝑖

𝑚

𝑖=1

 (2) 

subject to: {

𝜔𝑗 ≥ 𝜔𝑗
∗,                  for some natural frequencies 𝑗

𝜔𝑘 ≤ 𝜔𝑘
∗ ,                for some natural frequencies 𝑘

𝐴𝑖,𝑚𝑖𝑛 ≤ 𝐴𝑖 ≤ 𝐴𝑖,𝑚𝑎𝑥 ,                             𝑖 = 1,2, … , 𝑑

 (3) 

 

where 𝑨  represents the vector of design variables (i.e., the cross-sectional areas of 

members); 𝑑 is the total number of design variables; 𝑚 is the total number of truss members; 

𝜌𝑖 , 𝐴𝑖 , and 𝐿𝑖  are the material density, cross-sectional area, and length of the 𝑖-th truss 

member; 𝑓(𝑨) denotes the objective function (i.e., the total weight of the truss structure); 𝜔𝑗 

and 𝜔𝑘 are the 𝑗-th and 𝑘-th natural frequencies of the truss structure, respectively; 𝜔𝑗
∗ and 

𝜔𝑘
∗  stand for the lower and upper bounds corresponding to 𝜔𝑗  and 𝜔𝑘 , respectively; and 

𝐴𝑖,𝑚𝑖𝑛 and 𝐴𝑖,𝑚𝑎𝑥 denote the lower and upper bounds of 𝐴𝑖, respectively.  

The above problem is a constrained optimization problem. To deal effectively with the 

frequency constraints of the problem, the penalty function method, the most common 

constraint-handling approach, is employed. In the penalty function method, the original 

constrained optimization problem is transformed into an unconstrained one, by incorporating 

a penalty term in the objective function [15]. In this paper, the following dynamic 

multiplicative penalty function is adopted [48-49]: 

 

𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑨) = (1 + ɛ1 × 𝑐)ɛ2 , 𝑐 = ∑𝑐𝑖

𝑞

𝑖=1

 (4) 

 

where 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑨) is the penalty function; 𝑐 stands for the sum of constraint violations; 𝑞 is 

the total number of frequency constraints; and ɛ1 and ɛ2 are the parameters of the penalty 

function. These parameters are adjusted based on the exploration and exploitation properties 

of the search process [48]. In this study, in all design examples, ɛ1 is set to a constant value, 

and ɛ2  increases linearly with the number of iterations. This implies that, as the search 

progresses, a higher penalty is imposed on infeasible solutions. As a consequence, in the 

early stages of the search process, highly infeasible solutions are also admissible, and 

therefore, the search agents are allowed to more freely explore the search space, but as the 

search progresses, feasible solutions are preferred over infeasible ones [50]. If the 𝑖 -th 

frequency constraint is violated, then the value of 𝑐𝑖 depends on the severity of the violation; 

otherwise, it is set to 0. This can be expressed mathematically as follows: 

 

𝑐𝑖 = {
|1 −

𝜔𝑖

𝜔𝑖
∗| , if the 𝑖 − th frequency constraint is violated

0,                                                                                        otherwise

 (5) 

 

Consequently, the optimization problem can be rewritten as follows: 

 

Minimize: 𝑝(𝑨) = 𝑓(𝑨) × 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑨) (6) 
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where 𝑝(𝑨) is the penalized objective function.  

In order to determine the natural frequencies and vibration modes of a structure with the 

finite element method, the following algebraic equation should be solved [51]: 

 

𝑘𝜙𝑛 = 𝜔𝑛
2𝑚𝜙𝑛 (7) 

 

where 𝑚 and 𝑘 are the mass and stiffness matrices of the structure, respectively, and 𝜔𝑛 and 

𝜙𝑛 are the 𝑛-th natural frequency and natural vibration mode of the structure, respectively.  

 

2.2 Overview of arithmetic optimization algorithm (AOA) 

The arithmetic optimization algorithm (AOA) is a population-based metaheuristic 

optimization algorithm developed by Abualigah et al. in 2021 [39]. 

Arithmetic is a branch of mathematics concerned with numbers and their addition, 

subtraction, multiplication, and division [52]. Accordingly, AOA simulates the distribution 

characteristics of the four basic arithmetic operations of addition (A), subtraction (S), 

multiplication (M), and division (D). Like other metaheuristic algorithms, the search process 

of AOA can be divided into two main phases: exploration and exploitation. In the 

exploration phase, the position of the search agents (candidate solutions) are updated based 

on multiplication and division operators, whereas the exploitation phase deals with addition 

and subtraction operators. Fig. 2 shows the order of arithmetic operations and their 

supremacy from outside to inside. In the following subsections, the mathematical 

formulation of AOA is briefly presented.  

 

 
Figure 2. The order of arithmetic operations and their supremacy (from outside to inside) [44] 

 

2.2.1 Initialization phase 

Like other population-based metaheuristics, AOA starts with a population of randomly 

generated candidate solutions (𝑋), as shown in Eq. (1). Note that, whenever the best solution 
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of the current iteration is better than the best solution found so far, then the best solution 

found so far is updated. 

 

𝑋 =

[
 
 
 
 
𝑥1,1 … 𝑥1,𝑗 … 𝑥1,𝑛

… … … … …
𝑥𝑖,1 … 𝑥𝑖,𝑗 … 𝑥𝑖,𝑛

… … … … …
𝑥𝑁,1 … 𝑥𝑁,𝑗 … 𝑥𝑁,𝑛]

 
 
 
 

 (8) 

 

where 𝑁  denotes the number of candidate solutions in the population; 𝑛  stands for the 

number of design variables; and 𝑥𝑖,𝑗 represents the 𝑗-th design variables of the 𝑖-th candidate 

solution of the initial population.  

The AOA employs a dynamic function, named Math Optimizer Accelerated (𝑀𝑂𝐴), for 

switching between exploration and exploitation phases during the search process. The 𝑀𝑂𝐴 

function is defined as follows:   

 

𝑀𝑂𝐴(𝐶𝐼𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝐶𝐼𝑡𝑒𝑟 × (
𝑀𝑎𝑥 − 𝑀𝑖𝑛

𝑀𝐼𝑡𝑒𝑟

) (9) 

 

where 𝑀𝐼𝑡𝑒𝑟 is the maximum number of iterations; 𝐶𝐼𝑡𝑒𝑟 is the current iteration number and 

varies between 1 and 𝑀𝐼𝑡𝑒𝑟 ; 𝑀𝑂𝐴(𝐶𝐼𝑡𝑒𝑟)  denotes the value of the function 𝑀𝑂𝐴  at the 

current iteration; and 𝑀𝑖𝑛  and 𝑀𝑎𝑥  denote the minimum and maximum values of 𝑀𝑂𝐴 

function, respectively. In this work, 𝑀𝑖𝑛 and 𝑀𝑎𝑥 are set to 0.2 and 0.9, respectively, as 

suggested by Abualigah et al. [39]. 

When 𝑀𝑂𝐴(𝐶𝐼𝑡𝑒𝑟) < 𝑟1, the search space is explored using the multiplication (M) and 

division (D) operators, but when 𝑀𝑂𝐴(𝐶𝐼𝑡𝑒𝑟) ≥ 𝑟1 , the promising regions of the search 

space located in the exploration phase are exploited using the addition (A) and subtraction 

(S) operators. Note that 𝑟1 is a uniformly distributed pseudorandom number between 0 and 

1. As can be observed from Eq. (2), 𝑀𝑂𝐴(𝐶𝐼𝑡𝑒𝑟) starts from 𝑀𝑖𝑛 + (𝑀𝑎𝑥 − 𝑀𝑖𝑛)/𝑀𝐼𝑡𝑒𝑟 at 

the first iteration (i.e., 𝐶𝐼𝑡𝑒𝑟 = 1) and increases linearly until it reaches 𝑀𝑎𝑥  at the last 

iteration (i.e., 𝐶𝐼𝑡𝑒𝑟 = 𝑀𝐼𝑡𝑒𝑟 ). As a result, 𝑀𝑂𝐴(𝐶𝐼𝑡𝑒𝑟) can smoothly switch between the 

exploration and exploitation phases. 

 

2.2.2 Exploration phase 

As aforementioned, arithmetic operations of multiplication (M) and division (D) are 

employed in the exploration phase of AOA to guide the exploration of the search space. 

Because of the highly scattering nature of M and D operators, diverse regions of the search 

space could be explored. These operators are not able to thoroughly exploit the promising 

regions of the search space. However, they are required to ensure that all the search space is 

explored enough to provide a reliable estimate of the global optimum. The exploration phase 

of the AOA is executed based on the following position update rule: 
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𝑥𝑖,𝑗
′ = {

𝑥𝐵𝑒𝑠𝑡,𝑗 ÷ (𝑀𝑂𝑃 + 𝜀) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,        𝑟2 > 0.5

𝑥𝐵𝑒𝑠𝑡,𝑗 × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,                otherwise
 (10) 

 

where 𝑥𝑖,𝑗
′  is the updated value of the 𝑗-th design variable of the 𝑖-th candidate solution; 

𝑥𝐵𝑒𝑠𝑡,𝑗 denotes the 𝑗-th design variables the best solution found so far; 𝐿𝐵𝑗 and 𝑈𝐵𝑗 are the 

lower and upper bounds of the j-th design variables, respectively; 𝜀 is a very small floating-

point number (i.e., 2−52) to avoid singularity; 𝑟2 is a uniformly distributed pseudorandom 

number between 0 and 1; and 𝜇 is a parameter to control the search process, which is set to 

0.5 as suggested by Abualigah et al. [39]. Also, 𝑀𝑂𝑃  denotes a function called Math 

Optimizer Probability, which is established by the following equation: 

 

𝑀𝑂𝑃(𝐶𝐼𝑡𝑒𝑟) = 1 − (
𝐶𝐼𝑡𝑒𝑟

𝑀𝐼𝑡𝑒𝑟

)
1/𝛼

 (11) 

 

where 𝑀𝑂𝑃(𝐶𝐼𝑡𝑒𝑟) denotes the value of the coefficient MOP at the current iteration number, 

and 𝛼 is a sensitive parameter reflecting the accuracy of exploitation over the iterations, 

which is set to 5 as suggested by Abualigah et al. [39]. 

As can be observed from Eq. (3), the division (D) operator is conditioned by 𝑟2 > 0.5 and 

the multiplication (M) operator will be ignored until the division (D) operator completes its 

search task; otherwise, the multiplication (M) operator is adopted to implement the search 

process instead of the D. 

 

2.2.3 Exploitation phase 

In contrast with multiplication (M) and division (D) operators that produce large step sizes 

which result in highly scattered population of candidate solutions, addition (A) and 

subtraction (S) operators produce small step sizes which lead to highly dense population of 

candidate solutions. As a result, these operators can easily intensify the search in the 

promising regions of the search space detected in the exploration phase. The exploitation 

phase of the AOA is performed based on the following position update rule: 

 

𝑥𝑖,𝑗
′ = {

𝑥𝐵𝑒𝑠𝑡,𝑗 − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,        𝑟3 > 0.5

𝑥𝐵𝑒𝑠𝑡,𝑗 + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) ,    otherwise
 (12) 

 

where 𝑟3 is a uniformly distributed pseudorandom number between 0 and 1. 

From Eq. (3), it can be seen that the subtraction (S) operator is conditioned by 𝑟3 > 0.5 

and the addition (A) operator will be neglected until the subtraction (S) operator performs its 

search task; otherwise, the Addition (A) operator is employed to guide the search process 

instead of the S.  

It is noted that, in both exploration and exploitation phases, if the penalized objective 

function value corresponding to the updated position of the 𝑖-th candidate solution is better 

than that of its current position, the new position will replace its corresponding current 
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position. For a minimization optimization problem, this can be expressed mathematically as 

follows: 

 

𝑥𝑖 = {
𝑥𝑖

′,       𝑝(𝑥𝑖
′) <  𝑝(𝑥𝑖)  

𝑥𝑖 ,       otherwise
 (13) 

 

where 𝑝(𝑥𝑖) denotes the penalized objective function value of the 𝑖-th candidate solution. 

The pseudocode of the original AOA is summarized in Fig. 3 as follows [44]: 

 

 
Figure 3. Pseudocode of the original AOA [44] 

 

2.3 Improved AOA (IAOA) 

The original AOA represents an interesting source in inspiration for exploring the search 

space. However, as observed in previous studies, the original AOA suffers from premature 
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stagnation in non-optimal solutions [42-43]. This may be due to the rapid loss of population 

diversity in the early stages of the search process, caused by poor exploration of the search 

space, as noted by Kaveh and Biabani Hamedani [44]. In order to overcome the 

shortcomings mentioned below for the original AOA, Kaveh and Biabani Hamedani [44] 

have recenly proposed an improved version of AOA, called IAOA, and applied it to discrete 

structural optimization problems. In the following, after a detailed explanation of the 

shortcomings of the original AOA noted by Kaveh and Biabani Hamedani [44], we review 

the IAOA method in detail. The exploration and exploitation phases of the original AOA are 

clearly distinguished from each other by their unique position updating rules (i.e., Eqs. (10) 

and (12) for exploration and exploitation phases, respectively) [44]. Exploration means the 

ability to generate diverse solutions so as to explore the search space globally [53]. 

However, it can be deduced from Eq. (10) that the exploration phase of the AOA consists of 

focusing the search around the best solution found so far, which may rapidly reduce the 

population diversity in the early stages of the search process [44]. As a result, the original 

AOA suffers from the problem of poor exploration and may converge prematurely to non-

optimal solutions [44]. On the other hand, the position updating rule given by Eq. (10) 

involves the bounds of design variables, which means that the exploration phase of the 

original AOA depends on the bounds of design variables [44]. This may cause difficulties in 

convergence, especially when bounds of the design variables are too narrow or too wide 

[44]. In fact, when the bounds of the design variables are too conservative, large step sizes 

are generated for the movement of solutions in the search space, which may result in 

exceeding the boundary of the search space [44]. On the other hand, when the lower and 

upper bounds are very close to each other, small step sizes are generated for the movement 

of solutions in the search space, which may lead to premature convergence to non-optimal 

solutions [44]. In addition, in the case where the design variables have the same lower and 

upper bounds, the original AOA suffers from another serious drawback which will be 

discussed below in more detail [44]. 

Let us consider the case where all design variables have the same bounds (i.e., 𝑈𝐵1 =
𝑈𝐵2 = ⋯ = 𝑈𝐵𝑛  and 𝐿𝐵1 = 𝐿𝐵2 = ⋯ = 𝐿𝐵𝑛 ). This is the case of discrete structural 

optimization where the design variables are selected from a predefined set of standard 

sections. In such cases, it follows from Eq. (11) that, in each iteration, when 𝑟2 > 0.5, all the 

design variables of the best solution found so far (i.e., 𝑥𝐵𝑒𝑠𝑡,𝑗 , 𝑗 = 1,2, … , 𝑛) are scaled by 

the same factor (𝑀𝑂𝑃 + 𝜀) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗). Similarly, in each iteration, when 

𝑟2 ≤ 0.5, all the design variables of the best solution found so far are multiplied by the same 

factor 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) . As a result, in the exploration phase of each 

iteration of the original AOA, all the design variables of the best solution found so far are 

scaled (i.e., multiplied or divided) by only two factors, which leads to the exploration of a 

very limited region of the search space. This may cause the loss of population diversity, 

which may result in slow convergence and premature convergence to non-optimal solutions 

[44]. This is also true for the exploitation phase of the original AOA (see Eq. (12)), which 

will be discussed later.  

 In order to address the drawbacks of the exploration phase of the original AOA, on the 

basis of division and multiplication operators, the position updating rule of the exploration 

phase of the IAOA has been proposed as follows [44]: 
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𝑥𝑖,𝑗
′ = {

𝑥𝑖,𝑗 ÷ (1 + (−1)𝑟𝑎𝑛𝑑𝑖([1,2]) × 0.5 × 𝑟𝑎𝑛𝑑 × 𝑀𝑂𝑃̅̅ ̅̅ ̅̅ ̅) ,            𝑟2 > 0.5

𝑥𝑖,𝑗 × (1 + (−1)𝑟𝑎𝑛𝑑𝑖([1,2]) × 0.5 × 𝑟𝑎𝑛𝑑 × 𝑀𝑂𝑃̅̅ ̅̅ ̅̅ ̅) ,        otherwise
 (14) 

 

where 𝑥𝑖,𝑗 is the current value of the 𝑗-th design variable of the 𝑖-th candidate solution; 𝑟𝑎𝑛𝑑 

is a uniformly distributed pseudorandom number between 0 and 1; 𝑟𝑎𝑛𝑑𝑖([1,2]) returns a 

pseudorandom scalar integer between 1 and 2; and 𝑀𝑂𝑃̅̅ ̅̅ ̅̅ ̅ is a parameter-free version of the 

function 𝑀𝑂𝑃, which is defined as follows [44]: 

 

𝑀𝑂𝑃̅̅ ̅̅ ̅̅ ̅(𝐶𝐼𝑡𝑒𝑟) = (1 −
𝐶𝐼𝑡𝑒𝑟

𝑀𝐼𝑡𝑒𝑟

)
𝑟𝑎𝑛𝑑𝑖([1,2])

 (15) 

 

In contrast to the original AOA, the exploration phase of the IAOA implies focusing the 

search around the current position of solutions, as can be seen from Eq. (14) [44]. In other 

words, in the exploration phase of the IAOA, the position of each solution is updated with 

respect to its current position, thus allowing a broader exploration of the search space to 

avoid diversity loss during the search process [44]. In addition, the random numbers used in 

Eqs. (14) and (15) cause that different step sizes are generated more the movement of 

solutions in the search space, which can enhance the exploration and maintain the diversity 

of the population [44]. It can be seen that Eq. (14) does not depend on the bounds of design 

variables, which may help to avoid convergence difficulties [44].  

As Eq. (12) suggests, the position updating rule of solutions in the exploitation phase of 

the original AOA, similar to its exploration phase, involves focusing the search around the 

best solution found so far. As aforementioned, the major drawback of the exploitation phase 

of the original AOA arises when all the design variables have the same lower and upper 

bounds. In this case, as Eq. (12) suggests, in each iteration, the same factor 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 −

𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) is subtracted from (when 𝑟3 > 0.5) or added to (when 𝑟3 ≤ 0.5) all the 

design variables of the best solution found so far. As noted earlier, this means that, in each 

iteration of the exploitation phase of the original AOA, all the design variables of the best 

solution found so far are scaled (i.e., added or subtracted) by only two factors. As a result, 

exploitation does not take place effectively. In order to overcome the drawback mentioned 

above, based on subtraction and addition operators, the following position updating rule has 

been proposed for the exploitation phase of IAOA [44]: 

 

𝑥𝑖,𝑗
′ = {

𝑥𝐵𝑒𝑠𝑡,𝑗 − 𝑥𝐵𝑒𝑠𝑡,𝑗 × 𝑟𝑎𝑛𝑑 × 𝑀𝑂𝑃̅̅ ̅̅ ̅̅ ̅ × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) ,           𝑟3 > 0.5

𝑥𝐵𝑒𝑠𝑡,𝑗 + 𝑥𝐵𝑒𝑠𝑡,𝑗 × 𝑟𝑎𝑛𝑑 × 𝑀𝑂𝑃̅̅ ̅̅ ̅̅ ̅× (𝑈𝐵𝑗 − 𝐿𝐵𝑗),         otherwise
 (16) 

 

By using Eqs. (15) and (16), different step sizes are generated for the movement of 

solutions in the search space, thus allowing a better exploitation of the best solution found so 

far. The formulation of the original AOA involves the four algorithm-specific parameters of 

𝑀𝑖𝑛, 𝑀𝑎𝑥, 𝛼, and 𝜇 that should be tuned for any specific application. From Eqs. (14), (15), 

and (16), it is seen that the parameters 𝛼 and 𝜇 are eliminated from the formulation of the 

IAOA, which makes it easier to be implemented compared with the original AOA. To the 

best of our knowledge, this is the first attempt to apply both the AOA and IAOA for 
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structural optimization problems with frequency constraints. The pseudocode and flowchart 

of IAOA are shown in Figs. 4 and 5, respectively. 

 

 
Figure 4. Pseudocode of the Improved AOA (IAOA) [44] 
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Figure 5. Flowchart of the improved AOA (IAOA) [44] 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Numerical examples 

In this section, to demonstrate the effectiveness and efficiency of both the AOA and IAOA, 

three numerical examples of size optimization of large-scale truss structures with frequency 

constraints are investigated. The results achieved by IAOA are compared with those of the 

original AOA and some state-of-the-art methods. The examples include a 600-bar single-

layer dome-shaped truss with 25 design variables, an 1180-bar single-layer dome-shaped 

truss with 59 design variables, and a 1410-bar double-layer dome-shaped truss with 47 

design variables. Material properties, cross-sectional area bounds, and frequency 

constraints for all examples are listed in Table 1. In all examples, for both the AOA and 

IAOA, the population size is to 𝑁 = 20 and the maximum number of iterations is set to 

𝑀𝐼𝑡𝑒𝑟 = 1000 . These values were selected on the basis of the results of preliminary 

experiments and other similar works in the literature [54]. In addition, the parameters 𝑀𝑖𝑛, 

𝑀𝑎𝑥, 𝛼, and 𝜇 are fixed at 0.2, 0.9, 5, and 0.5, as suggested by Abualigah et al. [39]. In 

order to consider the stochastic nature of the optimization process, ten independent 

optimization runs were carried out for each example. The statistical results of the original 

AOA and IAOA are provided in terms of the best, average, worst, and standard deviation 
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(SD) of the optimized weights obtained over ten independent runs. The maximum number of 

finite element analyses (𝑀𝑎𝑥𝑁𝐹𝐸) of different methods are also provided. The finite element 

method (FEM) model for free vibration analysis of truss structures and the optimization 

algorithms were programmed in the Matlab environment. The FEM model was verified 

against the optimization results reported by Kaveh and Ilchi Ghazaan [55]. The simulations 

were performed on a PC with Intel(R) Core (TM) i5-7200U CPU 2.50 GHz 2.71 GHz, and 

8.00 GB RAM with a Microsoft Windows 10, 64-bit operating system.  

 
Table 1: Optimal results obtained for the complete graphs 

Property 600-bar truss 1180-bar truss 1410-bar truss 

Elasticity modulus 

(N/m2) 
2×1011 2×1011 2×1011 

Material density 

(kg/m3) 
7850 7850 7850 

Cross-sectional area 

bounds (m2) 
0.0001 ≤ 𝐴𝑖 ≤ 0.01 0.0001 ≤ 𝐴𝑖 ≤ 0.01 0.0001 ≤ 𝐴𝑖 ≤ 0.01 

Frequency 

constraints (Hz) 
𝜔1 ≥ 5, 𝜔3 ≥ 7 𝜔1 ≥ 7, 𝜔3 ≥ 9 𝜔1 ≥ 7, 𝜔3 ≥ 9 

 

3.1.1 The 600-bar dome-like truss 

The first example is a 600-bar dome-shaped truss structure shown in Fig. 6(a-b). This is a 

cyclic symmetric structure composed of 24 identical substructures. The angle between two 

adjacent substructures is 15°. Each substructure has 9 nodes and 25 elements, as depicted in 

Fig. 6(c). The nodal coordinates of the first substructure in the Cartesian coordinate system 

are given in Table 2. The connectivity information of the first substructure is also given in 

Table 3. The cross-sectional area of each element of the substructure is considered as a 

sizing design variable. The layout of the structure is not changed during the design process. 

Therefore, this is an optimization problem with 25 sizing design variables. A non-structural 

mass of 100 kg is attached to all free nodes of the structure. The material properties, 

frequency constraints, and cross-sectional area bounds of the structure are listed in Table 1. 

This problem has been previously studied by many researchers using various metaheuristic 

techniques, such as CPA [11], CRPSO [56], JA [57], PFJA [58], etc. 

In this example, the effectiveness of the modifications made in IAOA will be discussed in 

detail. Table 3 provides a comparison between the optimal results achieved by the present 

algorithms with those of the other methods existing in the literature. It is seen that the IAOA 

achieved the best performance in terms of the best weight, average weight, worst weight, 

and standard deviation. The IAOA obtained a feasible optimal solution with a structural 

weight of 6067.73 kg after 19140 FE analyses, which is better than the best weights obtained 

by all the other algorithms, namely 6132.30 kg for CRPSO [56], 6112.64 kg for JA [57], 

6336.85 kg for CPA [11], 6333.25 kg for PFJA [58], 6140.51 kg for ECBO-Cascade [9], and 

6416.58 kg for AOA. The worst weight obtained by the IAOA over ten independent runs is 

6077.32 kg, which is even better than the average weights of the others. Compared to the 

original AOA, IAOA showed significant improvements in all aspects. In fact, the AOA 

showed the worst performance in terms of the best and average weights, which may be 
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because of the drawbacks mentioned for the AOA. In terms of the convergence speed, the 

maximum number of finite element (FE) analyses of the IAOA is 20000, which is less than 

or equal to those of other methods, except the JA [57]. However, the IAOA achieved a 

feasible optimal solution with a structural weight of 6100.00 kg after 12880 FE analyses, 

which is better than the best weight of the JA after 15000 FE analyses. Fig. 7 illustrates the 

diversity of the optimal weights found by AOA and IAOA over ten independent runs. As it 

is seen from the figure, the AOA converged prematurely to non-optimal solutions in all runs. 

In contrast, IAOA consistently converged to near-optimal solutions, confirming the high 

robustness of these methods. The average convergence histories of the AOA and IAOA are 

also plotted for comparison in Fig. 8. It demonstrates clearly that the IAOA has the fastest 

convergence rate during the entire optimization process. On the other hand, it is observed 

that the AOA converged prematurely within the first 10180 FE analyses (i.e., the first 509 

iterations) and no improvement was observed in the average optimized weight. This comes 

from the fact that the original AOA suffers severely from the rapid loss of population 

diversity and is prone to stagnation in non-optimal solutions. However, thanks to the 

effective exploration of the search space in the IAOA, it significantly improves the 

convergence rate. Fig. 9 compares the average number of solution replacements occurred in 

the AOA and IAOA over ten independent runs. It is noted that the solution replacement 

means the current position of a solution is replaced by its corresponding updated position. 

As can be seen from the figure, the average number of solution replacements observed in the 

IAOA after 20000 FE analyses is about 1365, which is much more than about 234 of the 

AOA, which can be attributed to a better and more effective search process in the IAOA 

compared with the original AOA. Table 4 lists the first five natural frequencies 

corresponding to the optimal designs provided by the AOA, IAOA, and other methods 

available in the literature. As expected, all of the frequency constraints are satisfied.  

 
Table 2: Nodal coordinates of the first sub-structure of the 600-bar dome-like truss (m) 

Node number Coordinates (𝑥, 𝑦, 𝑧) 

1 (1.0, 0.0, 7.0) 

2 (1.0, 0.0, 7.5) 

3 (3.0, 0.0, 7.25) 

4 (5.0, 0.0, 6.75) 

5 (7.0, 0.0, 6.0) 

6 (9.0, 0.0, 5.0) 

7 (11.0, 0.0, 3.5) 

8 (13.0, 0.0, 1.5) 

9 (14.0, 0.0, 0.0) 
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Figure 6. Schematic of the 600-bar dome: (a) perspective view; (b) top view; (c) substructure 

 

Table 3: Optimal results of the 600-bar truss obtained by different algorithms (cm2) 

Element number 

(element nodes) 

CRPSO 

[56] 
JA [57] CPA [11] PFJA [58] 

ECBO-

Cascade [9] 

This study 

AOA IAOA 

1 (1-2) 1.5 1.7518 1.155 1.1867 1.0299 1.3793 1.7980 

2 (1-3) 1.5 1.1811 1.304 1.2967 1.3664 1.1927 1.3862 

3 (1-10) 7 4.8878 4.178 4.5771 5.1095 3.9187 4.2000 

4 (1-11) 1 1.5162 1.335 1.3356 1.3011 5.2569 1.2123 

5 (2-3) 16.5 18.1659 18.375 18.3157 17.0572 16.6232 16.5982 

6 (2-11) 34.5 36.0764 39.914 38.5097 34.0764 29.5133 38.5906 

7 (3-4) 12 12.6571 13.609 13.5917 13.0985 12.7923 12.7886 

8 (3-11) 15.5 14.6113 16.470 16.8824 15.5882 15.0625 15.5347 

9 (3-12) 10.5 11.3198 14.108 13.8766 12.6889 12.4096 11.8675 

10 (4-5) 10 8.4580 10.038 9.5286 10.3314 9.8585 9.5076 

11 (4-12) 8.5 8.4285 9.514 9.4218 8.5313 7.1074 8.3020 

12 (4-13) 9 9.7321 9.329 9.7643 9.8308 8.5387 9.6386 

13 (5-6) 7.5 7.2947 6.938 7.2431 7.0101 7.2116 7.0861 

14 (5-13) 5.5 6.1922 5.545 5.3913 5.2917 8.6170 5.2601 
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15 (5-14) 6.5 6.4395 6.763 6.7468 6.2750 5.1681 6.5093 

16 (6-7) 5.5 5.4760 5.209 5.1493 5.4305 5.7574 5.5456 

17 (6-14) 5 3.2695 3.842 3.8342 3.6414 4.1665 3.5337 

18 (6-15) 7.5 8.3724 8.112 8.0665 7.2827 8.0542 7.4756 

19 (7-8) 4.5 4.4987 4.252 4.2800 4.4912 5.8614 4.3597 

20 (7-15) 2 2.2197 2.227 2.2509 1.9275 2.0260 2.0899 

21 (7-16) 4.5 4.6162 4.582 4.5372 4.6958 4.8432 4.4251 

22 (8-9) 4 3.0667 3.336 3.5615 3.3595 4.8705 3.4614 

23 (8-16) 2 1.8549 1.725 1.7744 1.7067 1.6097 1.9229 

24 (8-17) 4.5 4.7960 4.675 4.6445 4.8372 6.6149 4.8054 

25 (9-17) 1.5 1.6029 1.673 1.6141 2.0253 1.6336 1.5993 

Best weight (kg) 6132.30 6112.64 6336.85 6333.25 6140.51 6416.58 6067.51 

Average weight 

(kg) 
6682.32 6146.19 6376.01 6380.31 6175.33 6935.54 6072.83 

Worst weight (kg) 10409.94 6783.48 - - - 7775.88 6077.32 

SD (kg) 999.25 17.24 90.39 47.40 34.08 447.00 3.10 

𝑀𝑎𝑥𝑁𝐹𝐸 20000 15000 40000 25000 20000 20000 20000 

 
Table 4: The first five natural frequencies of the 600-bar dome found by different methods (Hz) 

Frequenc

y number 
CRPSO [56] JA [57] CPA [11] PFJA [58] 

ECBO-

Cascade [9] 

This study 

AOA IAOA 

1 5.0231 5.0804 5.000 5.0011 5.001 5.0006 5.0000 

2 - 5.0804 5.000 5.0011 5.001 5.0006 5.0000 

3 7.0013 7.0001 7.000 7.0000 7.001 7.0034 7.0000 

4 - 7.0001 7.000 7.0000 7.001 7.0034 7.0000 

5 - 7.0006 7.000 7.0000 7.002 7.0480 7.0000 

 

 
Figure 7. Diversity of the optimal weights of the 600-bar truss found by different algorithms 
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Figure 8. The weight convergence histories of the 600-bar truss obtained by different algorithms 

 

 
Figure 9. The number of solution replacements observed in the AOA and IAOA (600-bar truss) 

 

3.1.2 The 1180-bar dome-like truss 
The 1180-bar dome-shaped truss shown in Fig. 10(a-b) is considered as the second example. 

This is also a cyclic symmetric structure consisted of 20 identical substructures. The angle 

between two adjacent substructures is 18°. Each substructure is composed of 20 nodes and 

59 elements, as shown in Fig. 10(c). The nodal coordinates of the first substructure in the 

Cartesian coordinate system are presented in Table 5. The connectivity information of the 

first substructure is also given in Table 6. The cross-sectional areas of the elements of the 
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substructure is considered as sizing design variables. The layout of the structure remains 

unchanged during the design procedure. Accordingly, this is a sizing optimization problem 

with 59 design variables. Similar to the previous example, a non-structural mass of 100 kg is 

attached to each free node of the structure. Table 1 lists the material properties, frequency 

constraints, and cross-sectional area bounds of the structure. This problem has been 

previously addressed in the literature using different metaheuritic techniques, such as JA 

[59], CPA [11], PFJA [58], etc. 

Table 6 compares the optimal solutions found by the AOA and IAOA with those of other 

methods in the literature. The results suggest that the IAOA obtained the best results in terms 

of the average weight and worst weight among all other methods, while the original AOA 

showed the worst performance in all aspects. The best weights found by the IAOA is 37386.45 

kg, which is better than the best weights of the other methods. Compared to the original AOA, 

IAOA provided significantly better results in all investigated parameters. The IAOA obtained 

a feasible optimal solution with a structural weight of 92249.08 kg after only 600 FE analyses, 

which is better than that the best weight found by the AOA after 20000 FE analyses. In terms 

of the convergence rate, the maximum number of FE analyses of the IAOA is 20000, which is 

less than or equal to those of the others. It is obvious from Table 6 that the AOA performed 

significantly worse than all other methods, confirming that the original AOA suffers from 

different problems. The diversity of the optimal weights obtained by AOA and IAOA over ten 

independent runs are depicted in Fig. 11. It is easily seen that, in all the ten runs, the original 

AOA converged prematurely to non-optimal solutions, indicating the problem of premature 

convergence to non-optimal solutions in the AOA. In contrast, the IAOA consistently 

converged to solutions near the global minimum. Fig. 12 compares the average convergence 

histories of the AOA and IAOA. It reveals that the IAOA converges faster than AOA. In 

addition, it is seen that, similar to the previous example, the AOA converged prematurely 

within the first 18040 FE analyses (i.e., the first 902 iterations) and no improvement was 

observed in the average optimized weight. This is due to poor exploration of the search space 

in the original AOA, leading to the rapid loss of population diversity and, thus, premature 

convergence to non-optimal solutions. Table 7 provides the first five natural frequencies 

evaluated at the optimal designs obtained by the AOA, IAOA, and other methods in the 

literature. None of the frequency constraints are violated, as expected.  

 
Table 5: Nodal coordinates of the first sub-structure of the 1180-bar dome-like truss (m) 

Node number Coordinates (𝑥, 𝑦, 𝑧) Node number Coordinates (𝑥, 𝑦, 𝑧) 

1 (3.1181, 0.0, 14.6723) 11 (4.5788, 0.7252, 14.2657) 

2 (6.1013, 0.0, 13.7031) 12 (7.4077, 1.1733, 12.9904) 

3 (8.8166, 0.0, 12.1354) 13 (9.9130, 1.5701, 11.1476) 

4 (11.1476, 0.0, 10.0365) 14 (11.9860, 1.8984, 8.8165) 

5 (12.9904, 0.0, 7.5000) 15 (13.5344, 2.1436, 6.1013) 

6 (14.2657, 0.0, 4.6358) 16 (14.4917, 2.2953, 3.1180) 

7 (14.9179, 0.0, 1.5676) 17 (14.8153, 2.3465, 0.0) 

8 (14.9179, 0.0, -1.5677) 18 (14.9179, 2.2953, -3.1181) 

9 (14.2656, 0.0, -4.6359) 19 (13.5343, 2.1436, -6.1014) 

10 (12.9903, 0.0, -7.5001) 20 (3.1181, 0.0, 13.7031) 
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Figure 10. Schematic of the 1180-bar dome: (a) perspective view; (b) top view; (c) substructure 

 

Table 6: Optimal results of the 1180-bar truss obtained by different algorithms (cm2) 

Element number 

(element nodes) 

Chaotic 

WSA [60] 

ECBO-

Cascade [9] 

PFJA 

[58] 
CPA [11] JA [59] 

This study 

AOA IAOA 

1 (1-2) 6.9078 8.0110 7.952 7.877 7.2951 25.3850 7.4342 

2 (1-11) 10.7524 8.7028 10.466 11.025 10.0202 44.9939 9.4269 

3 (1-20) 2.9439 3.1616 2.089 3.325 2.2254 23.1754 2.4849 

4 (1-21) 13.487 13.6820 14.219 14.672 14.4745 59.7622 14.4985 

5 (1-40) 3.3147 3.2865 3.944 2.894 3.1635 17.4938 3.3486 

6 (2-3) 6.9318 6.0397 5.979 5.872 6.1055 22.2250 6.1802 

7 (2-11) 7.6325 8.4370 7.775 7.026 7.4452 31.2942 6.9541 

8 (2-12) 6.2343 6.4122 6.351 6.746 6.1321 4.5063 6.8006 

9 (2-20) 1.3899 2.6346 1.896 1.608 2.0210 16.5124 1.7084 

10 (2-22) 12.9919 11.7440 11.908 11.696 11.6685 12.0677 12.5068 

11 (3-4) 6.9162 7.9272 7.241 7.523 6.7546 13.0891 6.7561 

12 (3-12) 5.119 5.4548 5.647 6.162 5.6377 9.6147 5.4502 



IMPROVED ARITHMETIC OPTIMIZATION ALGORITHM FOR … 683 

13 (3-13) 8.7795 6.7221 6.700 6.769 7.0624 14.0659 6.7871 

14 (3-23) 6.684 8.1544 7.799 7.671 7.0211 13.2000 7.1903 

15 (4-5) 9.317 9.7560 9.198 8.732 9.1227 23.5175 8.9336 

16 (4-13) 6.483 6.5905 6.282 5.841 5.6027 14.4125 5.8181 

17 (4-14) 8.2833 7.0392 7.695 8.545 7.5350 43.0417 7.5646 

18 (4-24) 8.0703 6.9219 7.520 7.386 7.4734 5.6947 7.3284 

19 (5-6) 12.7141 11.6919 11.840 12.668 12.9880 16.1875 11.9311 

20 (5-14) 7.0934 9.8890 7.230 8.733 7.3120 83.8732 7.9595 

21 (5-15) 10.069 9.3316 10.211 9.037 10.0703 13.0112 11.4983 

22 (5-25) 9.7217 9.1093 9.252 8.903 9.4058 97.1872 8.9429 

23 (6-7) 17.2315 18.1212 17.222 17.013 17.2086 72.8158 17.3905 

24 (6-15) 9.7761 10.6725 11.417 10.048 10.6750 16.9657 10.6771 

25 (6-16) 13.2779 13.5340 14.196 14.057 12.5926 14.1129 13.4863 

26 (6-26) 11.5212 12.0248 11.639 12.154 11.6369 57.4867 11.0536 

27 (7-8) 21.2086 23.1245 24.065 24.024 21.4858 90.6372 24.5693 

28 (7-16) 13.0618 15.2630 13.377 14.143 13.5946 36.0220 14.1344 

29 (7-17) 17.9725 18.3075 16.469 17.894 17.4000 21.2952 17.8450 

30 (7-27) 14.0147 15.2361 16.057 15.276 14.5421 17.3385 15.3335 

31 (8-9) 33.5273 40.0749 34.125 36.006 35.4919 94.4774 34.3383 

32 (8-17) 20.1075 18.4775 18.866 18.409 18.6342 24.6606 17.8344 

33 (8-18) 23.098 26.0689 24.600 22.644 25.3160 77.7791 24.4304 

34 (8-28) 22.0597 21.2213 21.103 22.121 22.2539 43.1877 21.0955 

35 (9-10) 49.187 46.3724 47.696 48.973 51.4201 79.7429 49.7797 

36 (9-18) 26.835 23.6689 27.760 25.396 24.9577 42.8752 24.5117 

37 (9-19) 31.4569 35.0703 33.518 33.599 34.5291 71.3263 34.1196 

38 (9-29) 30.2512 27.9369 31.773 31.724 32.2597 72.9074 31.9680 

39 (10-19) 34.4764 34.2912 33.592 36.419 35.6710 97.2279 37.3880 

40 (10-30) 1.1023 1.0726 1.000 1.004 1.0445 1.3381 1.2415 

41 (11-21) 9.9842 8.5106 9.455 10.624 9.6966 28.9967 9.8029 

42 (11-22) 7.5443 6.8664 7.189 6.909 7.0081 59.1603 7.1772 

43 (12-22) 7.6993 5.8229 6.767 5.644 6.5742 15.8988 6.1189 

44 (12-23) 6.0238 5.3986 6.322 5.301 5.6216 32.0946 5.6467 

45 (13-23) 6.4087 8.0669 6.720 7.370 7.1827 17.8620 6.3340 

46 (13-24) 6.4428 6.9797 6.425 6.301 6.1849 2.9031 6.0740 

47 (14-24) 8.4235 7.2735 8.451 7.853 7.7539 17.5726 8.4845 

48 (14-25) 8.7143 9.1827 8.176 7.987 7.6625 15.4899 7.8935 

49 (15-25) 9.8677 10.6227 10.069 10.460 9.8545 16.2250 10.9118 

50 (15-26) 11.4715 11.5740 12.219 11.446 10.4573 11.4122 10.7207 

51 (16-26) 15.248 15.5194 13.257 13.918 15.2639 16.8066 13.3498 

52 (16-27) 12.9199 14.1342 13.782 14.694 13.1448 48.6628 14.7147 

53 (17-27) 19.5895 17.1612 17.573 18.227 16.1681 85.8306 18.4999 

54 (17-28) 20.1524 19.0798 19.909 19.235 18.1630 18.3446 17.8163 

55 (18-28) 24.519 23.4414 24.019 24.421 23.4467 24.8469 23.7437 

56 (18-29) 25.838 26.5726 27.701 22.866 27.4008 33.8253 24.3389 

57 (19-29) 36.4546 33.4104 32.918 34.344 34.1134 82.8196 31.4950 

58 (19-30) 37.7461 37.1198 37.001 36.964 35.3212 20.2882 36.5415 

59 (20-40) 3.7146 4.7593 3.864 5.269 4.1362 1.2654 4.4240 
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Best weight (kg) 37642.38 37770.71 37695.59 37739.57 37439.44 92764.64 37386.45 

Average weight 

(kg) 
37795.53 37885.15 37755.05 37813.34 37453.56 115267.41 37424.50 

Worst weight (kg) - - - - - 138039.84 37468.30 

SD (kg) 165.32 133.84 58.025 61.50 5.91 11932.91 26.66 

𝑀𝑎𝑥𝑁𝐹𝐸 30000 20000 25000 80000 60000 20000 20000 

 
Table 7: The first five natural frequencies of the 1180-bar dome found by different methods (Hz) 

Frequency 

number 

Chaotic 

WSA [60] 

ECBO-

Cascade [9] 

PFJA 

[58] 

CPA 

[11] 
JA [59] 

This study 

AOA IAOA 

1 7.0001 7.000 7.0000 7.000 7.0001 7.0183 7.0000 

2 - 7.001 7.0000 7.000 7.0001 7.0183 7.0000 

3 9.0049 9.002 9.0024 9.000 9.0002 9.6930 9.0000 

4 - 9.002 9.0024 9.000 9.0002 9.6930 9.0000 

5 - 9.062 9.0129 9.000 9.0259 10.1564 9.0149 

 

 
Figure 11. Diversity of the optimal weights of the 1180-bar truss found by different methods 
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Figure 12. The weight convergence histories of the 1180-bar truss obtained by different methods 

 

3.1.3 The 1410-bar dome-like truss 
The last example is a 1410-bar double-layer dome shown in Fig. 13(a-b). As shown in the 

figure, the dome is a cyclic symmetric structure composed of 30 identical substructures. The 

angle between two adjacent substructures is 12°. Each substructure consists of 13 nodes and 

47 elements, as shown in Fig. 13(c). Table 8 gives the Cartesian coordinates of the nodes of 

the first substructure. The connectivity information between the nodes of the first 

substructure is also provided in Table 9. The cross-sectional area of each element of the 

substructure represents a sizing design variable. In addition, similar to the previous example, 

the layout of the structure remains unchanged during the design process. Thus, this is a size 

optimization problem with 47 design variables. A non-structural mass of 100 kg is also 

attached to all free nodes of the dome. The material properties, frequency constraints, and 

cross-sectional area bounds of the problem are given in Table 1. This problem has been 

previously addressed in the literature using different metaheuritic techniques, such as JA and 

ST-JA [50], CPA [11], PFJA [58], ECBO-Cascade [9], etc. 

Table 9 compares the optimal results obtained by the original AOA and IAOA with those 

of other methods reported in the literature. As expected, the IAOA showed the best 

performance in terms of the best weight, average weight, and worst weight. The IAOA 

obtained a feasible optimal solution with a structural weight of 10281.06 kg after 17980 FE 

analyses, which is better than the best weights found by the other methods. The average 

weight obtained by the IAOA over ten independent runs is 10303.99 kg, which is even better 

than the best weights of the other methods, except the ST-JA [50]. Furthermore, the 

maximum number of FE analyses of the IAOA is 20000, which is lower than or equal to 

those of the other reported methods. On the other hand, it is easily seen that the AOA 

showed the worst performance in terms of the best weight, average weight, and worst 

weight. Fig. 14 shows the diversity of the optimal weights obtained by the JA and its set-

theoretical variant [50], AOA, and IAOA. It is apparent that, in all the runs, the original 
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AOA converged prematurely to non-optimal solutions. However, the ST-JA and IAOA 

consistently converged to near-optimal solutions. Additionally, the weight convergence 

histories of the original AOA, IAOA, and JA and its set-theoretical variant [50] are plotted 

in Fig. 15. It is clear that the IAOA converges faster than the other three methods. 

Furthermore, it is seen that the AOA converged prematurely within the first 538 iterations 

(i.e., the first 10760 FE analyses) and no improvement was observed in the average 

optimized weight. As discussed earlier, this is because of the problem of premature 

convergence to non-optimal solutions in the AOA.  Table 10 shows the first five natural 

frequencies corresponding to the optimal designs obtained by the AOA, IAOA, and other 

algorithms in the literature. As expected, there are no any violated frequency constraints.   

 

 
Figure 13. Schematic of the 1410-bar dome: (a) perspective view; (b) top view; (c) substructure 

 
Table 8: Nodal coordinates of the first sub-structure of the 1410-bar dome-like truss (m) 

Node number Coordinates (𝑥, 𝑦, 𝑧) Node number Coordinates (𝑥, 𝑦, 𝑧) 

1 (1.0, 0.0, 4.0) 8 (1.989, 0.209, 3.0) 

2 (3.0, 0.0, 3.75) 9 (3.978, 0.418, 2.75) 

3 (5.0, 0.0, 3.25) 10 (5.967, 0.627, 2.25) 
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4 (7.0, 0.0, 2.75) 11 (7.956, 0.836, 1.75) 

5 (9.0, 0.0, 2.0) 12 (9.945, 1.0453, 1.0) 

6 (11.0, 0.0, 1.25) 13 (11.934, 1.2543, -0.5) 

7 (13.0, 0.0, 0.0)   

 

Table 9: Optimal results of the 1410-bar truss obtained by different algorithms (cm2) 

Element number 

(element nodes) 
CPA [11] 

ECBO-

Cascade [9] 
PFJA [58] JA [50] ST-JA [50] 

This study 

AOA IAOA 

1 (1-2) 7.416 7.9969 6.1902 5.1377 5.3860 1.0000 6.3863 

2 (1-8) 4.768 6.1723 4.4036 3.7009 4.4361 1.8557 4.9227 

3 (1-14) 38.993 35.5011 31.2253 33.9653 27.7395 3.6858 33.6911 

4 (2-3) 8.966 10.2510 8.4715 9.5992 8.1780 10.9872 8.7943 

5 (2-8) 4.511 5.3727 4.8590 5.5482 6.1189 6.8618 5.7958 

6 (2-9) 1.544 1.3488 1.5759 3.6969 1.5996 1.2054 1.2595 

7 (2-15) 8.371 11.4427 12.9451 21.8390 18.7495 73.8061 14.3463 

8 (3-4) 9.276 9.7157 9.3263 8.6255 9.2413 4.9589 8.7474 

9 (3-9) 3.583 1.3005 3.2716 3.5731 2.6310 2.6653 2.0556 

10 (3-10) 3.476 2.5046 3.2878 3.3162 2.2419 1.1121 2.5067 

11 (3-16) 15.531 10.7849 12.6719 9.0269 7.9773 3.1016 9.1437 

12 (4-5) 10.285 10.1954 10.0979 9.5465 10.1147 14.0888 9.5867 

13 (4-10) 2.497 2.2300 2.5803 2.4441 2.1849 1.9397 2.2082 

14 (4-11) 5.397 5.1186 5.3769 4.0831 6.4570 5.1783 4.8076 

15 (4-17) 16.503 14.0053 16.0581 12.3422 18.2837 20.6111 17.1329 

16 (5-6) 8.193 8.9713 8.6789 8.6568 8.2311 7.2776 7.9300 

17 (5-11) 3.829 4.0756 3.3199 4.0585 3.1540 7.7874 3.3090 

18 (5-12) 6.151 5.9211 6.4966 5.2401 5.8960 6.8604 6.4789 

19 (5-18) 10.465 10.6915 10.8804 13.4226 19.8678 13.7167 10.8960 

20 (6-7) 13.925 10.6220 14.0056 13.3777 13.5511 14.1815 13.4840 

21 (6-12) 4.415 4.5064 5.0843 6.0785 5.5768 8.1916 5.2432 

22 (6-13) 6.863 8.4086 6.9952 8.0438 6.7898 13.9162 6.8823 

23 (6-19) 1.769 5.8405 1.0270 1.0226 1.0175 4.5669 1.8317 

24 (7-13) 4.339 5.0342 4.3788 4.2592 4.1502 3.9236 4.9901 

25 (8-9) 2.115 3.8932 2.1951 2.1809 2.7295 2.6394 2.9352 

26 (8-14) 4.951 6.1647 4.2562 3.9382 4.1142 1.2307 4.4302 

27 (8-15) 4.147 6.8990 4.6605 5.2629 5.8905 11.0933 6.2621 

28 (8-21) 6.044 11.6387 8.8694 12.1908 11.5388 58.6796 12.9061 

29 (9-10) 3.222 3.8343 3.2333 4.1286 4.3093 3.1521 4.0837 

30 (9-15) 1.970 1.4772 1.7611 3.6731 1.8975 2.1452 1.3963 

31 (9-16) 4.290 1.3075 3.2831 2.6622 2.5412 2.1267 2.4584 

32 (9-22) 8.020 4.4876 7.1936 4.8959 4.6417 1.0710 4.3971 

33 (10-11) 4.857 6.0196 4.9840 5.4788 5.4994 3.4763 5.5176 

34 (10-16) 3.689 2.6729 3.6672 3.4673 2.4481 1.9475 2.5489 

35 (10-17) 2.831 1.6342 2.4062 2.4088 2.0894 1.1114 2.7184 

36 (10-23) 1.985 1.8410 2.1576 1.1880 1.7796 1.5194 2.1896 

37 (11-12) 6.373 6.8841 7.1043 7.1520 7.9676 10.6004 7.4787 

38 (11-17) 4.865 4.1393 5.2070 4.3348 4.9463 3.8586 5.1103 
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39 (11-18) 3.412 3.3264 3.6853 2.5376 3.3697 4.0934 3.6076 

40 (11-24) 1.027 1.0000 1.0007 1.0364 1.0136 1.0000 1.0328 

41 (12-13) 6.218 6.9373 6.6302 6.2738 6.9306 12.9063 6.8516 

42 (12-18) 7.342 4.4568 6.6773 5.7109 6.4813 4.7955 6.5476 

43 (12-19) 5.458 4.6758 5.2167 6.1412 5.3985 4.1583 4.7652 

44 (12-25) 1.140 1.0084 1.0016 1.0061 1.0063 1.0000 1.0080 

45 (13-19) 7.401 7.5103 8.1289 8.9413 7.8888 15.3458 7.3394 

46 (13-20) 4.578 5.2449 4.5151 4.7986 4.3830 4.4623 4.4722 

47 (13-26) 1.561 1.0550 1.0010 1.0556 1.0086 1.2463 1.2093 

Best weight (kg) 10435.47 10504.20 10326.296 10400.079 10283.094 12673.26 10268.06 

Average weight (kg) 10658.48 10590.67 10399.828 10707.902 10379.632 14860.15 10303.99 

Worst weight (kg) - - - 11202.677 10491.617 16863.29 10350.43 

SD (kg) 129.90 52.51 75.441 250.624 57.586 1336.49 24.77 

𝑀𝑎𝑥𝑁𝐹𝐸 80000 20000 25000 20000 20000 20000 20000 

 
Table 10: The first five natural frequencies of the 1410-bar dome found by various methods (Hz) 

Frequeny 

numbe 
CPA [11] 

ECBO-

Cascade [9] 
PFJA [58] JA [50] ST-JA [50] 

This study 

AOA IAOA 

1 7.000 7.0020 7.0009 7.0017 7.0002 7.0050 7.0000 

2 7.000 7.0030 7.0009 7.0017 7.0002 7.0050 7.0000 

3 9.000 9.0010 9.0001 9.0027 9.0006 9.0021 9.0000 

4 9.002 9.0010 9.0002 9.0035 9.0021 9.0021 9.0000 

5 9.002 9.0030 9.0002 9.0035 9.0021 9.0254 9.0000 

 

 

 
Figure 14. Diversity of the optimal weights of the 1410-bar truss found by different methods 
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Figure 15. The weight convergence histories of the 1410-bar truss obtained by different methods 

 

 

4. CONCLUSION 
 

This study has successfully applied an improved variant of the arithmetic optimization 

algorithm (AOA), called IAOA, to solve truss optimization problems with frequency 

constraints. The arithmetic optimization algorithm (AOA) is a recently proposed 

metaheuristic optimization algorithm inspired by the distribution characteristics of the four 

basic arithmetic operations of addition, subtraction, multiplication, and division, and has 

been applied to a number of optimization problems. The original AOA, however, due to its 

poor exploration capability, suffers severely from the problem of slow convergence rate and 

premature convergence to non-optimal solutions, especially when dealing with high-

dimensional optimization problems. More recently, to overcome the drawbacks of the 

original AOA, the IAOA has been proposed and applied to discrte structural optimization. 

The major contributions of IAOA include: (1) In the proposed IAOA, both exploration and 

exploitation phases of the original AOA are modified to improve the convergence speed and 

the exploration capability; (2) Compared to the original AOA, IAOA requires fewer 

algorithm-specific parameters, which makes it easier to implement. Finally, to verify the 

efficiency and effectiveness of the IAOA, three large-scale dome-like truss optimization 

problems with multiple frequency constraints have been examined. To the best of our 

knowledge, this is the first attempt to apply both the AOA and IAOA for structural 

optimization problems with frequency constraints. The results achieved by the IAOA have 

been compared with those of the original AOA and other methods existing in the literature. 

The results have demonstrated that the IAOA meaningfully outperforms the original AOA in 

both terms of convergence speed and robustness. It has been indicated that the IAOA can 

effectively overcome the shortcomings of the original AOA, such as poor exploration 

capability and slow convergence rate. In addition, the result comparisons with other methods 
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in the literature have shown than the IAOA is comparable to or better than many other 

existing methods. Accordingly, IAOA offers a great potential to extend the applications to 

other types of structural optimization problems, including frames, plates, shells, etc. 
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