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ABSTRACT 
 

In this article, topology optimization of two-dimensional (2D) building frames subjected to 

seismic loading is performed using the polygonal finite element method. Artificial ground 

motion accelerograms compatible with the design response spectrum of ASCE 7-16 are 

generated for the response history dynamic analysis needed in the optimization. The mean 

compliance of structure is minimized as a typical objective function under the material 

volume fraction constraint. Also, the adjoint method is employed for the sensitivity analysis 

evaluated in terms of spatial and time discretization. The ground structures are 2D continua 

taking the main structural components (columns and beams) as passive regions (solid) to 

render planar frames with additional components. Hence, building frames with different 

aspect ratios are considered to assess the usefulness of the additional structural components 

when applying the earthquake ground motions. Furthermore, final results are obtained for 

different ground motions to investigate the effects of ground motion variability on the 

optimized topologies. 
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1. INTRODUCTION 
 

Optimal design of structures under earthquake loads is an important and challenging issue in 

civil engineering, because providing an effective seismic performance considering the 

dynamic properties involved is not an easy problem. Also, this research area is relatively 
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young, and is in a progressive state of development for more than two decades [1]. Current 

design methods are based on the traditional trial-and-error process guaranteeing structural 

safety, but these methods may not necessarily result in optimal designs. Therefore, 

numerous investigations on structural optimization have been carried out [1-7]. Topology 

optimization aims to optimize material distribution in a computational domain considering 

some objective function(s) and constraint(s) [8, 9]. The results of topology optimization can 

help engineers to design a lightweight, cheap, and high-performance structure. As deduced 

from modern building constructions, there are many inspirations initiated from topology 

optimization to find the most effective structural form against various loads in addition to 

new architectural forms [10-12]. In this regard, there are some applications of topology 

optimization providing conceptual designs for modern structures, such as Voronoi diagrams 

[10]. 

Many studies have been conducted in the field of topology optimization to develop 

effective formulations resolving the inherent numerical issues such as the checkerboard 

pattern, mesh dependency, local minima, etc. [9, 13-17]. Apart from numerous studies on 

static problems [18, 19], topology optimization has been applied to various dynamic 

problems including free and forced vibrations of solids and structures [20-23]. However, 

only a few studies on topology optimization directly considered earthquake loading which is 

one of the extreme loads sustained by structures [20, 24-26]. Although the structures 

subjected to strong ground motions are expected to undergo inelastic behavior, in most 

cases, the design procedure assumes linearly elastic behavior of the structure and indirectly 

implements the effects of nonlinearity. Therefore, many researchers have used linear 

analysis in the topology optimization of structures under seismic excitation [1, 24].  

Here, the previous studies on topology optimization of structures considering earthquake 

loads are briefly discussed. Hajirasouliha et al. [27] optimized the topology of truss-like 

structures for seismic excitation to minimize the structural weight and to meet a state of 

uniform deformation. Zakian and Kaveh [26] proposed a topology optimization problem to 

identify the important structural parts of shear walls as well as shear wall-frame structures 

under both gravity and seismic loads using the equivalent static analysis. They also 

investigated the effects of structural tallness, shear wall-frame interaction, and opening. The 

Isotropic Material with Penalization (SIMP) approach was used to optimize compliance, and 

a penalty function was defined to impose a constraint on the top displacement. Allahdadian 

and Boroomand [24] performed topology optimization of a three-story planar frame 

subjected to seismic loads to minimize the norm of structural displacements. They employed 

the response history analysis using the finite element method with the SIMP approach. 

Gomez et al. [28] modeled the stochastic ground excitation as a zero-mean filtered white 

noise, and obtained the structural response covariances of 2D building models by solving the 

resulting Lyapunov equation. The optimization problem was introduced to minimize the 

maximum structural response covariances, and the sensitivities were calculated with a 

gradient-based solver. Martina and Deierlein [20] used a frequency-domain approach to 

propose a dynamic topology optimization formulation based on modal decompositions, by 

which the structural vibration was minimized for a seismic excitation defined as a response 

spectrum. Their results indicated that the optimized topology is affected by the earthquake 

frequency content. 

The three-node and four-node elements are often used in two-dimensional finite element 
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models. Nevertheless, a generalized element like the polygonal element with more than four 

vertices leads to further developments in mesh generation and the finite element method 

[29]. Indeed, polygonal finite elements can provide higher flexibility for the meshing of 

complicated geometries (see Figure 1). In this article, topology optimization of building 

frames under earthquake ground motion is considered using the polygonal finite element 

method. Artificial ground motion accelerograms are generated using the design spectrum of 

ASCE 7-16 [30] for the dynamic analysis needed in optimal seismic design. Topology 

optimization is carried out to minimize the mean compliance of structure considering the 

constraint of material volume fraction. Also, the adjoint method is employed for the 

sensitivity analysis. Two building frames with different aspect ratios are selected as the 

ground structures to evaluate the effectiveness of various structural parts under earthquake 

excitations. Different designs of structural topology corresponding to the generated 

accelerograms are obtained to include the effects of ground motion variability. 

 

 
Figure 1. A mesh of polygonal elements [29]. 

 

The remaining part of this article is organized as follows: Section 2 describes the 

topology optimization problem, and contains an overview of the applied solution method for 

topology optimization of the structure under seismic loading. Section 3 describes the 

artificially generated earthquake accelerograms. In Section 4, the results of two examples are 

provided. Finally, Section 5 summarizes the concluding remarks. 

 

 

2. TOPOLOGY OPTIMIZATION FORMULATION 
 

In this section, theoretical aspects of topology optimization in linear elasticity incorporating 

the dynamic loading are presented. Also, the design domain and density field utilized in the 

formulations of the optimization problem are briefly discussed, as implemented in PolyDyna 

[31]. In this study, the PolyDyna with slight modifications is used. 

 

2.1 Problem description 

The governing equation of a linearly elastic dynamic problem can be stated as: 
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D

N

div , in

, on

, on

c   

 

 

σ b u u

u u

σ.n t

 (1) 

 

where σ , t, b, u , u and u  show the stress tensor, prescribed boundary tractions, body force 

field, acceleration field, velocity field, and displacement field, respectively; c is a damping 

factor leading to energy dissipation. Also, n indicates the unit outward normal vector. The 

stress tensor is calculated using the linear isotropic elasticity tensor and the infinitesimal 

strain tensor, as given by  

 

T

: ,

1
( )

2



  

σ C ε

ε u u
 (2) 

 

In the topology optimization, the elasticity tensor depends on a density field which can be 

introduced using either the SIMP or Rational Approximation of Material Properties 

(RAMP). Furthermore,   denotes the physical density at point x ∈ Ω, which is usually 

expressed in terms of the density field, that is 

 

0( )Vm    (3) 

 

in which 
0  and ( )Vm   denote the mass density of solid material and volume interpolation 

function corresponding to the volume fraction at point x. The statement in Eq. (1) is valid for 

topology optimization of continua with arbitrary objective and constraint functions. 

However, in this paper, the objective function is the mean compliance of structure, as given 

by  

 

N0

1
( , ) d d

ft

f

f t
t




  u t u x  (4) 

 

In addition, in order to impose a limitation on the amount of material, the following 

constraint is defined: 

 

1
( ) ( )d 0Vg m v 


  
 

x  (5) 

 

where v  denotes the prescribed total material volume fraction. 
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2.2 Discretization 

Let z be the vector of design variables, such that z ∈ [0, 1]N where N shows the total number 

of design variables which is also equal to the total number of polygonal elements used in the 

mesh. Hence, the vector of filtered densities is expressed as 

 

y Pz  (6) 

 

in which P is the filter matrix computed by  

 

1

lk k
lk N

lj j

j

w A
P

w A





 

(7) 

 

with 
kA being the element area; and 

lkw is a weighting coefficient based on the selected 

filter kernel. 

Furthermore, the time discretization of the governing equation using Nt time steps leads 

to  

 

, 0,1,...,i i i i ti N   Mu Cu Ku f  (8) 

 

where M, C, and K are mass, damping, and stiffness matrices, respectively. Also, 
if , 

iu , 

iu , and 
iu  are force, acceleration, velocity, and displacement vectors at the ith time step, 

respectively. When considering an earthquake excitation, g

i iu f Mr where r is the 

influence coefficient vector, and 
g

iu  is the ground acceleration at the ith time step. For a 

horizontal earthquake excitation, r = [1, 0, 1, 0, …, 1, 0]T is considered when using two-

dimensional polygonal elements. Mass and stiffness matrices are evaluated as  

 

1

( )
N

V l l

l

m y


M m

 
(9) 

 

and 

 

1

( )
N

E l l

l

m y


K k  (10) 

 

where the summation refers to the assembly operator. Also, the mass matrix and stiffness 

matrix of an element are calculated by  
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T

0 d
l

l l l


 m H H x  (11) 

 

and 

 

T

0 d
l

l l l


 k B C B x  (12) 

 

in which 
lH  and 

lB indicate the interpolation functions matrix and the strain-displacement 

matrix, respectively. Also, 
0C  is the moduli matrix for a linearly elastic material. 

The volume and material interpolation functions are obtained as 

 

( ) (1 ) ( )V l V lm y m y     (13) 

 

and 

 

( ) (1 ) ( )E l E lm y m y     (14) 

 

in which 𝜀 ≪ 1 to avoid instability when 
ly approaches zero in the limit. Here, the threshold 

interpolation function and the RAMP function are used as the volume and material 

interpolation functions, respectively [32, 33]. Moreover, the damping matrix is computed 

using the Rayleigh approach, as follows: 

 

M Ka a C M K  (15) 

 

in which 
Ma and 

Ka  are two parameters depending on the damping ratios and the natural 

frequencies of effective modes. 

According to the discretization of both density and displacement fields, the discretized 

elastodynamic topology optimization problem is obtained as follows: 

 

0Minimize ( , ,..., )

( )

such that ( ) 0, 1,...,
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(16) 
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in which 
lA  is the area of the lth element, Nc is the number of volume constraints, and j

denotes a set of elements constrained by jg . Also, the discrete form of mean dynamic 

compliance is stated as 

 

T

0

0

1
( , ,..., )

t

t

N

N i i

it

f
N 

 z u u f u  (17) 

 

It should be noted that the Hilber, Hughes, and Taylor (HHT-α) scheme [34] is used for 

the time integration here.  

 

2.3 Sensitivity analysis 

In this study, the adjoint method is utilized for sensitivity analysis to prevent the calculation 

of expensive derivatives of the state variables. Accordingly, the discretize-then-differentiate 

approach is used [31, 35].  

The sensitivity of an objective function is expressed as 

 

0

d

d

tN

i

ie e i e

f f f

z z z

 
  
  


u

u
 

(18) 

 

Indeed, in order to prevent the computational efforts needed for calculating the last term 

in Eq. (18), the adjoint method is used. Using the HHT-α method for the time discretization, 

and after some algebraic operations, the following relation is obtained [31]:  

 

1

d d d

d d d

N
l l

le e l e l

E Vf f f

z z E z V

  
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

 

(19) 

 

with 
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d
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i
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(20) 

 

and 

 

T

0

d

d

tN

i
i

il l l

f f

V V V
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 


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ξ

 
(21) 

 

in which T

iξ  and iR  are the adjoint vector and residual vector at the ith time step, such that  

 

0 0

( 1) ( 1)
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l l K l
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and 

 

 
0 0

( 1)

( ) 0

(1 ) 1, ...,

l l M l
i

l li M li l i tl

a for i

a for i NV   

  
 

       

m u uR

m u u u
 

(23) 

 

where α is a parameter in the HHT-α scheme. For the mean dynamic compliance as the 

objective function when considering the earthquake excitation, one can write  

 

g T g

1 0

1
0, ( ) ,

tNN

l l i li i

l il l i t

f f f
u u

E V N 

   
   

  
 m r u Mr

u
 

(24) 

 

where 
liu  denotes the displacement vector corresponding to element l at the ith time step. 

 

 

3. ARTIFICIAL EARTHQUAKE ACCELEROGRAMS 
 

In this section, the employed earthquake accelerograms are discussed. The use of artificial 

ground motions can reduce the computational cost because the total number of time steps for 

an artificial ground motion can usually be less than that of a real ground motion. However, 

when the ground motion is compatible with a design spectrum, as an alternative to the real 

ground motion, the artificial ground motion can also give desirable results due to its 

reasonable frequency content and peak ground acceleration (PGA). In order to consider the 

effects of ground motion variability and the effects of using almost the same intensity for 

ground motions in the topology optimization problem, three artificial ground motions 

compatible with the design spectrum of ASCE 7-16 [30] are generated. The method given in 

Ref. [36] is used for synthesized accelerogram generation, and also the quadratic baseline 

correction is employed for the accelerograms. In the definition of the design spectrum 

illustrated in Figure 2, the site class D and spectral response acceleration parameters 

Ss=0.60g and S1=0.32g are assumed.  

 

 
Figure 2. The design response spectrum used for synthesized accelerogram generation. 

 

Also, the long-period transition period and the moment magnitude are taken as TL=8 s 

and Mw=6.5. The generated accelerograms are shown in Figure 3 where the PGA of the first, 
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second, and third accelerograms are equal to 0.246g, 0.241g, and 0.288g, respectively. 

 

  
(a) (b) 

 
(c) 

 
Figure 3. Artificially generated earthquake ground motions: (a) Accelerogram 1, (b) 

Accelerogram 2, and (c) Accelerogram 3. 

 

 

4. DESIGN EXAMPLES 
 

This section presents two examples of topology optimization for two-dimensional building 

frames under artificial ground motions using the response history analysis. The ground 

structures are two-dimensional continua (see Figure 4) containing passive regions to render 

building frames having additional structural components. These passive regions include the 

columns and beams as the main structural components which are not removed from the domain 

(passive solid region) during the optimization.  

In-plane dimensions of columns and beams are selected as 0.4 m. For all the examples, 

the damping ratio is chosen as 0.05, and the volume fraction limit is taken as 0.35. Elasticity 

modulus, mass density, and Poisson ratio are assumed to be 35 GPa, 2400 kg/m3, and 0.2, 

respectively. In addition, a lumped mass of 5000 kg is assigned to both end nodes of every 

beam in the structure. Each generated accelerogram has a duration of 10.06 s, which is 

applied to the structure in the horizontal direction, as shown in Figure 4. The time step size 

of dynamic analysis is equal to that of the accelerograms, which is 0.01 s. 
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Figure 4. The ground structure used in topology optimization under a horizontal earthquake 

excitation. 

 

4.1 Low-rise case 

The first example is a low-rise building frame. The width and height of the structure are 

selected as 4.8 m and 6.6 m, respectively. Damping coefficients are aM = 2.0904 and aK = 

3.9535×10-4, and a mesh of 12,672 elements with unit thickness is used. Also, the filter 

radius is assumed as 0.1 m. Results of the topology optimization are illustrated in Figure 5, 

demonstrating that using the employed ground motions leads to almost the same designs. 

This phenomenon can be due to using the same design spectrum for generating those three 

ground motions. Furthermore, the configuration of the required bracings for the first story is 

different from that of the second story. 

 

   
(a) (b) (c) 

Figure 5. Optimized topologies obtained for the low-rise case using different earthquake ground 

motions: (a) Accelerogram 1, (b) Accelerogram 2, and (c) Accelerogram 3. 
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4.2 Mid-rise case 

Here, a four-story frame with a width of 4.8 m and a height of 13 m is considered. Damping 

coefficients are aM=1.1357 and aK=7.2769×10-4, and a mesh of 24,960 elements with unit 

thickness is used. The filter radius is equal to 0.2 m. The optimized topologies for three 

ground motions are illustrated in Figure 6. The optimized designs obtained using 

accelerograms 1 and 2 are almost the same, but the design optimized using accelerogram 3 is 

slightly different from them in the higher stories because the bracings in higher stories have 

larger lengths (located in higher elevations) when using accelerogram 3. Furthermore, size 

of the bracing connections formed in the third story in Figure 6(c) is not very similar to the 

corresponding sizes in Figures 6(a) and 6(b). Similar to the previous example, the lower 

stories require significantly stronger bracings than the higher stories. 

 

   

(a) (b) (c) 

Figure 6. Optimized topologies obtained for the mid-rise case using different earthquake ground 

motions: (a) Accelerogram 1, (b) Accelerogram 2, and (c) Accelerogram 3. 

 

 

5. CONCLUSOINS 
 

In this paper, topology optimization of planar continua under seismic excitation was performed 

using the linear response history analysis. In order to improve the applicability of optimized 

solutions, building frames corresponding to the planar continua were generated by defining the 

passive solid regions. The polygonal finite element method was utilized for spatial 

discretization, due to its suitable performance in modeling complex geometries. Also, the HHT-

α scheme was used as the time integration, and artificial ground motion accelerograms were 

generated according to the ASCE 7-16 design spectrum for the dynamic analysis.  

Three ground motions were employed in order to evaluate the effects of ground motion 

variability on the optimized topologies obtained by minimizing the mean dynamic 

compliance under a constraint on the material volume fraction. The final results provide 
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desirable insight into the topological properties of the structure in both architectural and 

structural aspects. Also, the optimized topologies illustrate that the differences between the 

results obtained using the employed accelerograms are not significant when considering the 

ground motions compatible with the design spectrum. Of course, the differences are greater 

for the mid-rise structure. Since the dynamic properties of low-rise and mid-rise structures 

are not identical, one can obviously expect different optimized topologies as demonstrated 

by the examples. However, the obtained results similarly show that low elevations of the 

structure need remarkably stronger bracings than its high elevations.  
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