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ABSTRACT

The primary objective of this paper is to propose a novel technique for hybridizing various
metaheuristic algorithms to optimize the size of discrete structures. To accomplish this goal,
two well-known metaheuristic algorithms, particle swarm optimization (PSO) and enhanced
colliding bodies optimization (ECBO) are hybridized to propose a new algorithm called
hybrid PSO-ECBO (HPE) algorithm. The performance of the new HPE algorithm is
investigated in solving the challenging structural optimization problems of discrete steel
trusses and an improvement in results has been achieved. The numerical results demonstrate
the superiority of the proposed HPE algorithm over the original versions of PSO, ECBO,
and some other algorithms in the literature.
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optimization, truss structures.

Received: 15 November 2023; Accepted: 17 December 2023

1. INTRODUCTION

Over the past decade, various optimization algorithms have been extensively used to solve
structural optimization problems. Studies indicate that gradient-based algorithms are not
suitable for optimal design of structures due to their limitations. [1]. On the other hand,
metaheuristics use the random exploration of design space and this makes them more
powerful and efficient in solving structural optimization problems, compared to gradient-
based ones [2]. It is not necessary for them to have any prior knowledge about the design
space or the optimization problem [3]. In recent years, several nature-inspired metaheuristics
have been developed, such as simulated annealing [4], genetic algorithms [5], and bacterial
foraging [6]. There are other algorithms inspired by social interactions, such as the particle
swarm algorithm [7, 8] and ant colonies [9], as well as some inspired by physical laws, such
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as the colliding bodies algorithm [10]. Upon closer inspection, it becomes evident that not
all structural optimization algorithms are equally effective in addressing all structural
optimization problems. The No Free Lunch Theorem [11] states that no metaheuristic can
perfectly solve all types of optimization problems. Proposing and improving metaheuristic
algorithms with different computational strategies to tackle different classes of optimization
problems is an active area of research [12-16].

The current study proposes a new and efficient approach to tackle discrete structural
optimization problems. Instead of introducing a new metaheuristic algorithm, the approach
hybridizes two well-known existing algorithms, namely Particle Swarm Optimization (PSO)
[7] and Enhanced Colliding Bodies Optimization (ECBO) [17]. The newly proposed
metaheuristic algorithm is known as the Hybrid PSO-ECBO (HPE) algorithm. The proposed
HPE is a parallel implementation combining both algorithms' benefits without increasing
computational cost. To evaluate the effectiveness of the proposed HPE metaheuristic, the
steel truss structure optimization problems are considered. The numerical results indicate
that HPE outperforms other algorithms in terms of convergence rate and final solutions.

2. PARTICLE SWARM OPTIMIZATION

The PSO algorithm, first proposed by Kennedy and Eberhart [7], is a stochastic algorithm
inspired by the social behavior of birds. PSO is an iterative approach to finding optimal
solutions for optimization problems, similar to other metaheuristic algorithms. The iteration
starts by generating random solutions. These solutions are then updated using a formulation
that incorporates current position vectors and velocity vectors of the next stage. The velocity
vector of the next stage has three components: the velocity vector of the current stage, an
updating vector towards the personal best, and an updating vector towards the global best. It
should be noted that these three elements are weighted by some coefficients that are named
as the importance factors and must be adjusted to solve a specific optimization problem. The
formulation is as follows:

X/

i+1

=Xij + V;{H (1)

where, X and V are the position and velocity vectors, respectively; irefers to iteration
number and j is the index of individual solution candidates. In Eq. (1), the velocity of the

next stage Viil is calculated as follows:
Vi, =V + (R - X))+ Cry(P) — X)) )

where C; and C, are self-confidence and global-confidence coefficients respectively; w is
the inertial weight coefficient; ij and ng are the best positions experienced by the jth
candidate and best position experienced by all candidate solutions up to ith iteration,
respectively; r; and r, are random vectors, chosen from a uniform random distribution
between 0 and 1.
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3. ENHANCED COLLIDING BODIES OPTIMIZATION

The ECBO metaheuristic algorithm proposed by Kaveh and llchi [17] is an improved
version of the colliding bodies optimization (CBO) algorithm [10], which uses memory to
store some historical best solutions to update the position of the candidate solutions in the
design space. The formulation of this algorithm is based on the basic physical concept of the
collision of rigid bodies and the change in their position and velocity after the collision. The
basic steps of ECBO are as follows [17]:

1. The initial positions of all colliding bodies (CBs) are determined randomly in an m-
dimensional search space as follows:

X0 = Xpin + 7 X Konax — Xonin) » & =1,2,m (3)

in which X? is the initial solution vector of the ith CB. Here, Xmin and Xmax are respectively

the lower and upper bounds of design variables; r is a random vector in the interval [0, 1]; n
is the number of CBs.
2. The value of mass for each CB is evaluated as follows:

m - @

where F(X;) is the objective function value of the ith CB.

3. Colliding memory (CM) is utilized to save a number of historically best CB vectors
and their related masses. Solution vectors in CM, are added to the population and the same
number of current worst CBs are deleted. Finally, CBs are sorted according to their masses.

4. CBs are divided into two equal groups:

(a) Stationary group; i :1,2,,,,,2 and (b) Moving group; i, :2+1’2+2""’n

5. The velocities of stationary and moving bodies before collision are evaluated as

follows:

V, =0 ©)
V-M = Xis - XiM (6)

6. The velocities of stationary and moving bodies after collision are evaluated as follows:

,_(a+a)m,

Y :(nfﬂn}v ")
' (miM_ mis)
Vi :[m+m}/ ®)
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t

£=1- ©)
where ¢ is the coefficient of restitution.
7. The new position of each CB is calculated as follows:
X=X RV (10)
X=X, +R; oV (12)

where R_and R, are random vectors uniformly distributed in the range of [-1,1].

8. A random parameter pro is introduced, specifying whether a component of each CB
must be changed. For each CB, pro is compared with rn; (i=1,...,n), a random number
uniformly distributed within (0, 1). If rn; < pro, one dimension of the ith CB is selected
randomly and changed.

9. The optimization process is terminated when a stopping criterion is satisfied.

4. HYBRID PSO-ECBO ALGORITHM

This paper proposes a straightforward and new approach for hybridizing two well-known
metaheuristic algorithms: PSO and ECBO. These algorithms simultaneously explore the
design space as a parallel implementation strategy. The fundamental steps of the HPE
metaheuristic algorithm are as follows:

Step 1. The optimization process starts with generating n random candidate solutions in
the design space using Eq. (3).

Step 2. The PSO and ECBO algorithms are simultaneously used to update the position of
the particles in the design space. In this case, 2xn updated candidate solutions will be in the
design space. Eqgs (1) and (2) are used to generate Xpso = {Xpso X350 - Xpso} and Eqs (4)
to (11) are used to generate Xgcpo = {Xtcpo X2cro - Xpcol-

Step 3. All the updated candidate solutions, X = [Xpso Xkcpo], are sorted according to
their objective function values. The best n particles (first half) are transferred to the next
generation.

XS = sort({(F(XY) F(X?) ... F(X?™)}) (12)

Xpow = (XS XS2 ... XS™} (13)

Step 4. The optimization process will continue until a termination condition (such as
reaching the maximum number of iterations) is met.

Step 5. The current best solution is considered the final solution.

The flowchart of the proposed HPE algorithm is shown in Fig. 1.
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Figure 1. Flowchart of the proposed HPE algorithm
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To investigate the efficiency of theproposed HPE metaheuristic algorithm a number of

benchmark structural optimization problems are preseted in the next section.

S5.ILLUSTRATIVE EXAMPLES

Two types of structural optimization problems are presented: steel truss and RC frame
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design problems. In the truss design examples, the objective is to minimize the structural
weight by selecting cross-sectional areas of elements from a discrete set of available
sections. However, in the case of RC frame problems, the main goal is to minimize the
construction cost of the frame by selecting cross-sections of beams and columns from
predefined standard databases.

5.1 Example 1: Planar 10-bar truss example

Fig. 2 shows the 10-bar truss which is a popular benchmark truss optimization problem. The
material density and the modulus of elasticity are 0.1 Ib/in.® and 10* ksi, respectively. The
allowable stress of members and the allowable displacement of all nodes are £25 ksi and
+2.0 in., respectively. In addition, the magnitude of vertical load P is 10° Ibs. The cross-
sectional areas of the structural members are 10 discrete design variables of this design
example selected from the following set:

S ={1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63,
3.84,3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74,7.22, 7.97, 11.50, 13.50, 13.90,
14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50} (in.?).

360 in. 360 in.

1

360 in.

Figure 2. 10-bar truss

In this example, 30 independent optimization runs were performed using different
algorithms conducting 4000 structural analyses. Table 1 compares the optimization results
obtained using HPE and those reported in the literature. In addition, the best convergence
histories of PSO, ECBO and HPE algorithms are compared in Fig. 3 for the 10-bar truss.

Table 1. Optimization results of 10-bar truss

Design Variables (in.?) HHS [18] SA [19] BB-BC [20] GA [21] HPE

Al 33.50 33.50 33.50 33.50 33.50
A2 1.62 1.62 1.62 1.62 1.62
A3 22.90 22.90 22.90 22.00 22.90
A4 14.20 14.20 14.20 15.50 14.20
A5 1.62 1.62 1.62 1.62 1.62

Ab 1.62 1.62 1.62 1.62 1.62
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A7 7.97 7.97 7.97 14.20 7.97
A8 22.90 22.90 22.90 19.90 22.90
A9 22.00 22.00 22.00 19.90 22.00
Al0 1.62 1.62 1.62 2.62 1.62
Best (Ib) 5490.74 5490.74 5490.74 5613.84 5490.74
Average (Ib) 5493.48 N/A 5494.17 N/A 5492.08
Standard deviation (Ib) 10.463 N/A 12.420 N/A 6.752
Number of analyses 5000 10500 8694 800 4000
6500 | | :
——PSO
6400 ——EcBO | ]
6300 —HAPE ]
6200 i
6100 1
)
= 6000 .
<
>
§ 5900 .
5800 .
5700 .
5600 .
5500 = -\ 2
0 500 1000 1500 2000 2500 3000 3500 4000

Number of Analysis

Figure 3. Convergence histories of the best solutions found by PSO, ECBO, and HPE for 10-bar
truss

The weights of the best solutions obtained by PSO and ECBO algorithms are 5531.98
and 5490.74, respectively. For ECBO, the values of mean and standard deviation of the
weight of the solutions are 5493.084 and 5.752, respectively. On the other hand, the
corresponding values for PSO are 5546.48 and 21.873. According to the results, the HPE
algorithm outperforms other algorithms.

5.2 72-bar truss example
Fig. 4 shows the 72-bar truss structure considered as the second design example of this
paper.
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Figure 4. 72-bar truss

The member groups are: (l) A1-As, (2) As—Aq, (3) A13—Ais, (4) A17—Ags, (5) A10-A,

(6) A2s—Aso, (7) Asi—Ass, (8) Ass—Ass, (9) Asr—Aao, (10) Au—Aus, (11) As—Asz, (12) Ass—
Ass, (13) Ass—Ass, (14) Ase—Ass (15), As—Aro, and (16) A71—A72. The material density and
the modulus of elasticity are 0.1 Ib/in.® and 10 ksi, respectively. There are two independent
loading conditions given in Table 2. The nodal displacements and element stresses are
limited to +£0.25 in. and £25 ksi, respectively. The discrete design variables are selected
from:
S={0.111, 0.141, 0.196, 0.25, 0.307, 0.391, 0.442, 0.563, 0.602, 0.766, 0.785, 0.994, 1.0,
1.228, 1.266, 1.457, 1.563, 1.62, 1.8, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13,
3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 459, 4.8, 4.97, 5.12, 5.74, 7.22,
7.97, 8.53, 9.3, 10.85, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 24.5,
26.5, 28.0, 30.0, 33.5} (in.?).
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Table 2. The load cases for the 72-bar spatial truss

Nodes Load Case 1 (kips) Load Case 2 (kips)
Py Py P, Py Py P,
17 5.0 5.0 -5.0 0.0 0.0 -5.0
18 0.0 0.0 0.0 0.0 0.0 -5.0
19 0.0 0.0 0.0 0.0 0.0 -5.0
20 0.0 0.0 0.0 0.0 0.0 -5.0

Table 3. Optimization results of 72-bar truss

Design Variables (in2) GA[22] DE[23] DHPSACO[24] IDEACO[25] HPE

[ Downloaded from ijoce.iust.ac.ir on 2026-02-15 ]

1 0.196 2.130 1.800 1.990 1.990

2 0.602 0.442 0.442 0.563 0.563

3 0.307 0.111 0.141 0.111 0.111

4 0.766 0.111 0.111 0.111 0.111

5 0.391 1.457 1.228 1.228 1.228

6 0.391 0.563 0.563 0.442 0.442

7 0.141 0.111 0.111 0.111 0.111

8 0.111 0.111 0.111 0.111 0.111

9 1.800 0.442 0.563 0.563 0.563

10 0.602 0.563 0.563 0.563 0.563

11 0.141 0.111 0.111 0.111 0.111

12 0.307 0.111 0.250 0.111 0.111

13 1.563 0.196 0.196 0.196 0.196

14 0.766 0.563 0.563 0.563 0.563

15 0.141 0.307 0.442 0.391 0.391

16 0.111 0.563 0.563 0.563 0.563

Best (Ib) 427.203  391.329 393.380 389.33 389.33

Average (Ib) - - - 390.31 389.73
Standard deviation (Ib) - - - 1.010 0.824
Number of analyses - - - 10000 8000

[ DOI: 10.22068/ijoce.2024.14.1.572 ]

In this example, 30 independent optimization runs were performed using different
algorithms conducting 8000 structural analyses. The optimization results obtained using
HPE and other algorithms are compared in Table 3. The best convergence histories of PSO,
ECBO and HPE algorithms are compared in Fig. 5.

For ECBO, the values of the best, mean, and standard deviation of the weights of the
optimal solutions are 393.380, 402.524, and 1.082, respectively. On the other hand, the
corresponding values for PSO are 434.48, 446.522, and 3.624. The results show the
superiority of the HPE algorithm over other algorithms.
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Figure 5. Convergence histories of the best solution found by PSO, ECBO, and HPE for 72-bar
truss

5.3 200-bar truss example

A 200-bar truss optimization problem is considered as the third illustrative example of this
paper. Fig. 6 shows the geometry and member grouping details of this structure. The
material density and the modulus of elasticity are 0.283 Ib/in.® and 3x10* ksi, respectively.
The allowable stress of members is £10 ksi. There are three loading conditions as follows:

Loading Condition 1: 1 kip load forces act in positive x direction at nodes 1, 6, 15, 20,
29, 34, 43, 48, 57, 62 and 71; Loading Condition 2: 10 Kips forces act negative y direction at
nodes 1, 2, 3, 4,5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33,
34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 62, 64, 66, 68, 70,
71, 72,73, 74, and 75; Loading Condition 3: combining loading conditions 1 and 2.

Cross-sectional areas of members are selected from the following set:

S$={0.100, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.133, 1.488, 1.764, 2.142, 2.697, 2.800,
3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 14.290,
17.170, 19.180, 23.680, 28.080, 33.700} (in.?).

In this example, 30 independent optimization runs were performed using different
algorithms conducting 12000 structural analyses. The optimization results obtained using
HPE and other algorithms are compared in Table 4. In Fig. 7, the best convergence histories
of PSO, ECBO and HPE algorithms are compared.

For ECBO, the values of the best, mean, and standard deviation of the weights of the
optimal solutions are 27789.097, 28487.524, and 922.082, respectively. On the other hand,
the corresponding values for PSO are 28075.4, 29427.522, and 1232.624. The results show
the superiority of the HPE algorithm over other algorithms.
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Table 5. Optimization results of 200-bar truss

[ Downloaded from ijoce.iust.ac.ir on 2026-02-15 ]

[ DOI: 10.22068/ijoce.2024.14.1.572 ]

Design Variables (in.?) IMV [26] mSQOS [27] HPE
Ax 0.1 0.1 0.1
Az 0.954 0.954 0.954
As 0.44 0.44 0.44
A4 0.1 0.1 0.1
As 2.142 2.142 2.142
As 0.347 0.347 0.347
A7 0.1 0.1 0.1
As 3.131 3.131 3.131
Ao 0.1 0.1 0.1
Ao 4.805 4.805 4.805
Au 0.44 0.44 0.44
An 0.347 0.44 0.347
A3 5.952 5.952 5.952
A 0.1 0.1 0.1
Ass 6.572 6.572 6.572
Asg 0.954 0.954 0.954
Axz 0.1 0.347 0.1
A 8.525 8.525 8.525
JANT 0.44 0.1 0.44
A 9.3 9.3 9.3
Az 0.954 0.954 0.954
Az 0.1 1174 0.1
Az 13.33 13.33 13.33
Az 0.1 0.44 0.1
Ass 13.33 13.33 13.33
Az 0.954 2.142 0.954
Az 5.952 3.813 5.952
Az 10.85 8.525 10.85
Az 14.29 17.17 14.29

Best (Ib) 27281.35 27544.191 27281.35
Average (Ib) 28771.426 27629.818 27963.32
Standard deviation (Ib) 624.026 90.254 603.67

Number of analyses 15000 21675 12000



http://dx.doi.org/10.22068/ijoce.2024.14.1.572
https://ijoce.iust.ac.ir/article-1-572-en.html

[ Downloaded from ijoce.iust.ac.ir on 2026-02-15 ]

[ DOI: 10.22068/ijoce.2024.14.1.572 ]

A NEW HYBRID METAHEURISTIC ALGORITHM FOR SIZE OPTIMIZATION ... 13

32000

31500

31000

30500

30000

29500

Weight (Ib)

29000

28500

28000

27500

1 1 1

4000 5000 6000 7000 8000 9000 10000 11000 12000

Number of Analysis
Figure 7. Convergence histories of the best solution found by PSO, ECBO, and HPE for 200-bar
truss

6. CONCLUSIONS

This paper proposes a hybrid PSO-ECBO (HPE) algorithm for dealing with discrete
structural optimization problems. The HPE strategy combines PSO and ECBO to efficiently
explore the design space. It starts by generating random candidate solutions in the design
space using PSO and ECBO. The best particles are directly transferred to the next generation
after sorting updated candidate solutions according to their objective values. This process
continues until a termination condition is satisfied, and the current best solution is
considered the final solution.

In order to illustrate the efficiency of the proposed HPE, three well-known discrete
benchmark truss optimization problems of 10-, 72-, and 200-bar truss structures are
presented. This paper compares the numerical results of HPE in 30 independent runs with
those of other metaheuristics including PSO and ECBO. The numerical results indicate that
in all the examples, the performance of the proposed HPE is better than the other algorithms.
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