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ABSTRACT 
 

The main objective of this study is to predict the maximum inter-story drift ratios of steel 

moment-resisting frame (MRF) structures at different seismic performance levels using 

feed-forward back-propagation (FFBP) neural network models. FFBP neural network 

models with varying numbers of hidden layer neurons (5, 10, 15, 20, and 50) were trained to 

predict the maximum inter-story drift ratios of 5- and 10-story steel MRF structures. The 

numerical simulations indicate that FFBP neural network models with ten hidden layer 

neurons better predict the inter-story drift ratios at seismic performance levels for both 5- 

and 10-story steel MRFs compared to other neural network models. 

 

Keywords: seismic performance level; steel moment resisting frame; neural network; feed-

forward back-propagation. 
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1. INTRODUCTION 
 

Ensuring sufficient seismic resistance is crucial for any structure to remain available after an 

earthquake. Seismic design procedures employ performance-based design to achieve this 

goal [1]. These approaches involve using nonlinear structural analysis methods to evaluate 

the nonlinear inelastic response of structures. However, this is a challenging design 

procedure that requires a significant amount of computational effort. Structural engineers are 

concerned with designing cost-efficient, reliable structures that can withstand earthquakes. 

Performance-based design optimization techniques have been developed to address this 

issue, and numerous studies have been conducted in this field [2-7]. Metaheuristic 

algorithms are the best solution to the performance-based design optimization problem of 

structures. These algorithms are based on stochastic natural phenomena and do not require 
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gradient computations, making computer implementation simple [8-12]. However, since 

metaheuristic algorithms are population-based search methods, the computational burden of 

performance-based design optimization using them is high because many nonlinear 

structural analyses must be performed. Neural networks are one of the best alternative 

solutions to reduce this burden.   

In recent years, there has been an increasing interest in using artificial intelligence 

techniques, particularly neural networks, to simplify complex problems. Neural networks are 

computational models that imitate the structure and function of the human brain. They have 

shown success in numerous research areas of civil engineering [13-17] because of their 

capacity to learn from data and model complex nonlinear relationships. This paper uses 

neural network models to predict the nonlinear seismic response of steel moment-resisting 

frame (MRF) structures at different seismic performance levels.  

Two design examples of 5-and 10-story SMFs are illustrated. Their maximum inter-story 

drift ratios are predicted using feed-forward back-propagation (FFBP) neural network 

models with different numbers of hidden layer neurons (5, 10, 15, 20, and 50), and the 

results are compared. The results indicate that the most accurate prediction is achieved by 

using ten hidden layer neurons. 

 

 

2. SEISMIC RESPONSES OF STEEL MRF STRUCTURES  
 

A seismic performance objective is a defined level of performance for a specific seismic 

hazard level. To establish a performance objective, one needs to determine a level of 

structural performance and the corresponding seismic hazard level. FEMA-356 [1] considers 

immediate occupancy (IO), life safety (LS), and collapse prevention (CP) performance 

levels. Each objective corresponds to a probability of exceedance in 50 years. IO, LS, and 

CP performance levels are assumed to correspond to a 50%, 10%, and 2% probability of 

exceedance in 50 years. Here, acceleration response spectra of the hazard levels are based on 

the Iranian seismic design code [18] for soil type III in a very high seismicity region, as 

shown in Fig. 1.  

 

 
Figure 1. Acceleration response spectra 

 

In seismic performance-based design, the structural response should be evaluated by 

performing nonlinear structural analysis. In this paper, a nonlinear static pushover analysis 

based on the displacement coefficient method [1] is performed using the OpenSees [19] 
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platform to evaluate the nonlinear structural response. Previous studies [20-23] have 

revealed that the seismic design of steel MRFs is typically dominated by maximum inter-

story drift ratios, and other constraints, such as plastic rotations of beams and columns, are 

generally not active. Therefore, in this paper, only the maximum inter-story drift ratios at IO, 

LS, and CP performance levels are considered the seismic responses of the steel MRFs.  

 

 

3. NEURAL NETWORKS 
 

Neural networks are highly efficient tools for solving complex and time-consuming 

problems. They are popular because they can learn from external data and information 

gained from past experiences. Unlike traditional problem-solving methods that follow 

specific rules or use physics equations related to the issues they work on, neural networks 

use their knowledge from past experiences to adapt to new problems. Their learning is not 

limited to explicit and desired knowledge but also encompasses implicit information that the 

designer may not know beforehand [24]. This paper employs a feed-forward multi-layer 

perceptron trained by a back-propagation [24] technique. This neural network is called a 

feed-forward back-propagation (FFBP) model, shown in Fig. 2.  

 

 
Figure 2. FFBP neural network model 

 

The training algorithm of the FFBP model is a gradient descent optimization algorithm 

that adjusts the weights in the steepest descent direction according to the following equation: 

 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝛻𝑡

 

(1) 

 

where 𝑊𝑡, 𝛻𝑡, and 𝜂𝑡 are the weight matrix, and the current gradient matrix learning rate, 

respectively, at iteration t. 
the back-propagation technique uses the Levenberg-Marquardt (LM) [24] algorithm to 

approach second-order training speed without having to compute the Hessian matrix. In the 

LM algorithm, the updating of the weights is achieved as follows: 

 

𝑊𝑡+1 = 𝑊𝑡 − [𝐽𝑇𝐽 + 𝛼𝐼]−1𝐽𝑇𝐸𝑟

 

(2) 

  

where J is the Jacobian matrix, the first derivatives of the network errors to the weights); Er 
is a vector of network errors; α is a correction factor; and I is the identity matrix.  

Regularization is a technique used to prevent overfitting in FFBP models. This is 

achieved by modifying the performance function of the model through the addition of a 

term. The added term consists of the mean of the sum of squares of the network weights. 

This is expressed as [24]: 
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𝑚𝑠𝑒𝑟 = 𝛾 (
1

𝑚
∑ (𝐸𝑟𝑘)2

𝑚

𝑘=1
) +

1 − 𝛾

𝑛𝑤
∑ (𝑊𝑡,𝑙)

2𝑛𝑤

𝑙=1
 

(3) 

 

where 𝛾 and 𝑛𝑤 are the performance ratio and number of network weights, respectively; m 

is the size of 𝐸𝑟𝑘. 

 

 

4. METHODOLOGY 
 

In this study, FFBP models predict the seismic response of planar steel MRFs encompassing 

5- and 10-story frames. The topology and member grouping details of the structures are 

shown in Figs. 3 and 4, respectively. 

 

                                               
Figure 3. 5-story steel MRF  

 

                                        
Figure 4. 10-story steel MRF 
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FFBP NN models are trained to predict maximum inter-story drift ratios of steel MRFs at 

seismic performance levels. For the 5- and 10-story steel SMFs, the input and output vectors 

of the NN models are as follows: 

 

For 5-story steel SMF 𝑋5 = {𝐶1  𝐶2 … 𝐶6  𝐵1  𝐵2 …   𝐵5}𝑇 (4) 

For 10-story steel SMF 𝑋10 = {𝐶1  𝐶2 … 𝐶15  𝐵1  𝐵2 …   𝐵10}𝑇 (5) 

For 5- and 10-story SMFs 𝑌 = {𝑑𝐼𝑂  𝑑𝐿𝑆  𝑑𝐶𝑃}𝑇 (6) 

where 𝑋5 and 𝑋10 are the input vectors of the NN models for 5 and 10-story steel MRFs, 

respectively; 𝑌 is the output vector; and 𝑑𝐼𝑂, 𝑑𝐿𝑆, and 𝑑𝐶𝑃 are the maximum inter-story drift 

ratios of steel MRFs at IO, LS, and CP performance levels, respectively.  

All the generated data samples for 5- and 10-story steel SMFs must satisfy geometric and 

strength constraints. Some checks should be considered the geometric constraints at all the 

framing joints. Fig. 5 shows a typical joint where a beam and two columns are connected, 

and based on these details, the following constraints must be met:  

 

 
Figure 5. A typical framing joint 

 

𝑏𝐵 ≤ 𝑏𝐶
𝑏𝑜𝑡 (7) 

𝑏𝐶
𝑡𝑜𝑝

≤ 𝑏𝐶
𝑏𝑜𝑡 (8) 

ℎ𝐶
𝑡𝑜𝑝

≤ ℎ𝐶
𝑏𝑜𝑡 (9) 

  

As the strength constraints, each structural element should satisfy the following 

constraints for the non-seismic load combinations [25]: 

 

For 
𝑃𝑢

∅𝑐𝑃𝑛

< 0,2 → 
𝑃𝑢

2∅𝑐𝑃𝑛

+
𝑀𝑢

∅𝑏𝑀𝑛

≤ 1,0 (10)  [
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For  
𝑃𝑢

∅𝑐𝑃𝑛

≥ 0,2 → 
𝑃𝑢

∅𝑐𝑃𝑛

+
8

9

𝑀𝑢

∅𝑏𝑀𝑛

≤ 1,0 (11) 

 

where 𝑃𝑢 is the required strength; 𝑃𝑛 is the nominal axial strength; ∅𝑐 and ∅𝑏 are the 

resistance factors; 𝑀𝑢 and 𝑀𝑛 are the required and nominal flexural strengths, respectively. 

If a structure passes the above checks, its seismic responses are evaluated by performing 

a nonlinear static pushover analysis based on the displacement coefficient method. Fig. 6 

illustrates a detailed flowchart of dataset generation for training and testing the NN model.  

 

 
Figure 6. Dataset generation flowchart 

 

The NN model’s prediction accuracy evaluation metrics, including Mean Absolute 

Percentage Error (MAPE), Root Mean Square Error (RSME), and Coefficient of 

Determination (R-square or R2) used in this study, are as follows: 

 

Mean Absolute Percentage Error 𝑀𝐴𝑃𝐸 =
100

𝑛𝑠
∑ |

𝑡𝑖 − 𝑦𝑖

𝑡𝑖
|

𝑛𝑠

𝑖=1

 (12) 

Root Mean Square Error 𝑅𝑀𝑆𝐸 = √
1

𝑛𝑠
∑(𝑡𝑖 − 𝑦𝑖)

2

𝑛𝑠

𝑖=1

 (13) 

Coefficient of Determination  𝑅2 = 1 −
∑ (𝑡𝑖 − 𝑦𝑖)

2𝑛𝑠
𝑖=1

∑ (𝑡𝑖 − 𝑡̅)2𝑛𝑠
𝑖=1

 (14) 
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where 𝑛𝑠 is the number of samples; 𝑡𝑖 is the ith target maximum inter-story drift; 𝑦𝑖 is ith 

predicted maximum inter-story drift; and 𝑡̅ is the mean of target maximum inter-story drift. 

In order to compare the efficiency of the trained FFBP models, average MAPE 

(AMAPE), average RMSE (ARMSE), and average R2 (AR2) of predicted inter-story drifts at 

IO, LS, and CP performance levels in both the training and testing phases are calculated as 

follows.  

 

𝐴𝑀𝐴𝑃𝐸𝑑𝑃𝐿
=

(𝑀𝐴𝑃𝐸𝑑𝑃𝐿
)

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
+ (𝑀𝐴𝑃𝐸𝑑𝑃𝐿

)
𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2
 𝑃𝐿 = 𝐼𝑂, 𝐿𝑆, 𝐶𝑃 (15) 

𝐴𝑅𝑀𝑆𝐸𝑑𝑃𝐿
=

(𝑅𝑀𝑆𝐸𝑑𝑃𝐿
)

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
+ (𝑅𝑀𝑆𝐸𝑑𝑃𝐿

)
𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2
 𝑃𝐿 = 𝐼𝑂, 𝐿𝑆, 𝐶𝑃 (16) 

𝐴𝑅𝑑𝑃𝐿

2 =
(𝑅𝑑𝑃𝐿

2 )
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

+ (𝑅𝑑𝑃𝐿

2 )
𝑡𝑒𝑠𝑡𝑖𝑛𝑔

2
 𝑃𝐿 = 𝐼𝑂, 𝐿𝑆, 𝐶𝑃 (17) 

 

This paper considers five FFBP NN models with 5, 10, 15, 20, and 50 hidden-layer 

neurons for each design example. These NN models are denoted by FFBP5, FFBP10, 

FFBP15, FFBP20, and FFBP50, respectively. 

 
 

5. NUMERICAL EXAMPLES 
 

The dead load of 2500 kg/m and and live load of 1000 kg/m are applied to all beams. The 

modulus of elasticity and yield stress of materials are E = 210 GPa and Fy = 235 MPa, 

respectively. The constitutive law is bilinear with a pure strain hardening slope of 3% of the 

elastic modulus. The sections of beams and columns are selected from the W-shaped 

sections listed in Table 1. 

 
Table 1: Available W-shaped sections 

Columns 
 

Beams 

No. Profile No. Profile No. Profile No. Profile 

1 W14×48 13 W14×257  1 W12×19 13 W21×50 

2 W14×53 14 W14×283  2 W12×22 14 W21×57 

3 W14×68 15 W14×311  3 W12×35 15 W24×55 

4 W14×74 16 W14×342  4 W12×50 16 W21×68 

5 W14×82 17 W14×370  5 W18×35 17 W24×62 

6 W14×132 18 W14×398  6 W16×45 18 W24×76 

7 W14×145 19 W14×426  7 W18×40 19 W24×84 

8 W14×159 20 W14×455  8 W16×50 20 W27×94 

9 W14×176 21 W14×500  9 W18×46 21 W27×102 

10 W14×193 22 W14×550  10 W16×57 22 W27×114 

11 W14×211 23 W14×605  11 W18×50 23 W30×108 

12 W14×233 24 W14×665  12 W21×44 24 W30×116 
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5.1 Five-story SMF 

To train and test the NN models, a data set including 400 samples is randomly generated. 

The components of output vector are shown in Figs. 7 to 9.  

 

 
Figure 7. Maximum inter-story drift ratios at IO level for 5-story steel MRF 

 

 
Figure 8. Maximum inter-story drift ratios at LS level for 5-story steel MRF 

 

 
Figure 9. Maximum inter-story drift ratios at CP level for 5-story steel MRF 
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The FFBP5, FFBP10, FFBP15, FFBP20, and FFBP50 NN models are trained and tested 

and the results are reported in Tables 2 to 6, in terms of MAPE, RMSE and R2.  
 

Table 2: Performance evaluation of FFBP5 for 5-story steel MRF 

Phase Metric 
Maximum inter-story drift ratio (%) 

dIO dLS dCP 

Training MAPE 3.4205 2.4947 2.5190 

RMSE 0.0342 0.0743 0.1097 

R2 0.8426 0.9085 0.9136 

Testing MAPE 4.4284 3.8692 3.9789 

RMSE 0.0459 0.1147 0.1813 

R2 0.6266 0.7163 0.7052 

 

Table 3: Performance evaluation of FFBP10 for 5-story steel MRF 

Phase Metric 
Maximum inter-story drift ratio (%) 

dIO dLS dCP 

Training MAPE 3.1527 1.7704 1.5688 

RMSE 0.0316 0.0513 0.0666 

R2 0.8658 0.9563 0.9681 

Testing MAPE 3.3533 2.8420 2.8230 

RMSE 0.0325 0.0797 0.1200 

R2 0.8124 0.8631 0.8708 

 

Table 4: Performance evaluation of FFBP15 for 5-story steel MRF 

Phase Metric 
Maximum inter-story drift ratio (%) 

dIO dLS dCP 

Training MAPE 2.9308 1.3359 1.0111 

RMSE 0.0291 0.0390 0.0435 

R2 0.8861 0.9748 0.9863 

Testing MAPE 3.5865 3.3212 3.6524 

RMSE 0.0358 0.0977 0.1612 

R2 0.7721 0.7944 0.7672 

 

Table 5: Performance evaluation of FFBP20 for 5-story steel MRF 

Phase Metric 
Maximum inter-story drift ratio (%) 

dIO dLS dCP 

Training MAPE 2.7863 1.0404 0.6043 

RMSE 0.0277 0.0307 0.0257 

R2 0.8965 0.9843 0.9952 

Testing MAPE 3.7745 4.3199 4.6736 

RMSE 0.0395 0.1273 0.2028 

R2 0.7225 0.6509 0.6315 
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Table 6: Performance evaluation of FFBP50 for 5-story steel MRF 

Phase Metric 
Maximum inter-story drift ratio (%) 

dIO dLS dCP 

Training MAPE 1.0221 0.2032 0.0928 

RMSE 0.0106 0.0060 0.0042 

R2 0.9848 0.9993 0.9998 

Testing MAPE 5.6251 5.9895 5.9659 

RMSE 0.0568 0.1729 0.2381 

R2 0.4270 0.3558 0.4921 

 

Figs. 10 to 12 show AMAPE, ARMSE, and AR2 for the predicted inter-story drift ratios at 

IO, LS, and CP performance levels, respectively. 

 

 
Figure 10. AMAPE of inter-story drift ratios predicted by NN models for 5-story steel SMF 

 

 
Figure 11. ARMSE of inter-story drift ratios predicted by NN models for 5-story steel SMF 

 

 
Figure 12. AR2 of inter-story drift ratios predicted by NN models for 5-story steel SMF 
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The results show that: 

• For dIO, the AMAPE of the FFBP10 model is 17.11%, 0.17%, 0.84% and, 2.12% less 

than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.  

• For dLS, the AMAPE of the FFBP10 model is 27.52%, 0.96%, 13.95% and, 25.52% 

less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.   

• For dCP, the AMAPE of the FFBP10 model is 32.41%, 5.83%, 16.79% and, 27.51% 

less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.   

• For dIO, the ARMSE of the FFBP10 model is 19.97%, 1.23%, 4.61% and, 4.89% less 

than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.   

• For dLS, the ARMSE of the FFBP10 model is 30.69%, 4.17%, 17.09% and, 26.77% 

less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.   

• For dCP, the ARMSE of the FFBP10 model is 35.88%, 8.84%, 18.34% and, 22.99% 

less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.   

• For dIO, the AR2 of the FFBP10 model is 14.22%, 1.21%, 3.66% and, 18.87% greater 

than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.   

• For dLS, the AR2 of the FFBP10 model is 11.98%, 2.84%, 11.26% and, 34.26% less 

than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively. 

• For dCP, the AR2 of the FFBP10 model is 13.59%, 4.87%, 13.04% and, 23.26% less 

than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.   

The numerical results demonstrate that the FFBP NN model with 10 hidden layer neurons 

outperforms the other models in predicting the inter-story drift ratios at IO, LS, and CP 

seismic performance levels.  

Figs. 13 and 14 display the Absolute Percentage Error (APE) of the predicted maximum 

inter-story drifts, along with the regression results during the training and testing phases for 

the NN model with the best prediction accuracy. 
 

 
Figure 13. APEs of the predicted inter-story drifts using 10 neurons for 5-story steel MRF 
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Figure 14. Prediction of inter-story drifts using 10 neurons for 5-story steel MRF 

 

5.2 Ten-story SMF 

A data set including 600 samples is randomly generated to train and test the NN models. The 

components of the output vector are shown in Figs. 15 to 17.  
 

 
Figure 15. Maximum inter-story drift ratios at IO level for 10-story steel MRF 
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Figure 16. Maximum inter-story drift ratios at LS level for 10-story steel MRF 

 

 
Figure 17. Maximum inter-story drift ratios at CP level for 10-story steel MRF 

 

The FFBP5, FFBP10, FFBP15, FFBP20, and FFBP50 NN models are trained and tested 

to predict the inter-story drift ratios at IO, LS, and CP seismic performance levels for the 12-

story steel frame. The obtained results are reported in Tables 7 to 11 in terms of MAPE, 

RMSE, and R2.  

 

Table 7: Performance evaluation of FFBP5 for 10-story steel MRF 

Phase Metric 
Maximum inter-story drift ratio (%) 

dIO dLS dCP 

Training MAPE 3.3977 1.5321 1.3050 

RMSE 0.0428 0.0593 0.0773 

R2 0.6657 0.9412 0.9535 

Testing MAPE 4.0157 2.3134 2.1223 

RMSE 0.0501 0.0930 0.1244 

R2 0.5700 0.8316 0.8567 
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Table 8: Performance evaluation of FFBP10 for 10-story steel MRF 

Phase Metric 
Maximum inter-story drift ratio (%) 

dIO dLS dCP 

Training MAPE 2.9572 0.9708 0.6961 

RMSE 0.0364 0.0378 0.0415 

R2 0.7590 0.9762 0.9866 

Testing MAPE 3.4241 2.3648 2.1793 

RMSE 0.0424 0.0946 0.1317 

R2 0.6919 0.8256 0.8393 

 

Table 9: Performance evaluation of FFBP15 for 10-story steel MRF 

Phase Metric 
Maximum inter-story drift ratio (%) 

dIO dLS dCP 

Training MAPE 2.8523 0.6894 0.3819 

RMSE 0.0350 0.0273 0.0231 

R2 0.7769 0.9874 0.9958 

Testing MAPE 3.8279 3.2561 2.9862 

RMSE 0.0472 0.1265 0.1778 

R2 0.6185 0.6882 0.7071 

 
Table 10: Performance evaluation of FFBP20 for 10-story steel MRF 

Phase Metric 
Maximum inter-story drift ratio (%) 

dIO dLS dCP 

Training MAPE 2.2760 0.6107 0.2892 

RMSE 0.0275 0.0239 0.0173 

R2 0.8622 0.9904 0.9976 

Testing MAPE 3.9181 3.7783 3.7052 

RMSE 0.0478 0.1497 0.2172 

R2 0.6087 0.5635 0.5629 

 
Table 11: Performance evaluation of FFBP50 for 10-story steel MRF 

Phase Metric 
Maximum inter-story drift ratio (%) 

dIO dLS dCP 

Training MAPE 6.48e-06 1.23e-06 1.13e-06 

RMSE 8.01e-08 4.78e-08 6.47e-08 

R2 1 1 1 

Testing MAPE 5.6618 4.0869 3.7060 

RMSE 0.0741 0.1714 0.2278 

R2 0.0595 0.4278 0.5194 

 

Figs. 18 to 20 show AMAPE, ARMSE, and AR2 for the predicted inter-story drift ratios at 

IO, LS, and CP performance levels, respectively. 
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Figure 18. AMAPE of inter-story drift ratios predicted by NN models for 10-story steel SMF 

 

 
Figure 19. ARMSE of inter-story drift ratios predicted by NN models for 10-story steel SMF 

 

 
Figure 20. AR2 of inter-story drift ratios predicted by NN models for 10-story steel SMF 

 

The results show that: 

• For dIO, the AMAPE of the FFBP20 and FFBP50 NN models is 2.93% and 11.28% 

less than the FFBP10 model. The AMAPE of FFBP10 is 13.92% and 4.47% less than 

the FFBP5 and FFBP15 models, respectively.   

• For dLS, the AMAPE of the FFBP10 model is 13.26%, 15.46%, 24.00% and, 18.38% 

less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.   

• For dCP, the AMAPE of the FFBP10 model is 16.10%, 14.63%, 28.01% and 22.41% 

less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.   

• For dIO, the ARMSE of the FFBP10 model is 15.18% and 4.14% less than the FFBP5 

and FFBP15 and 4.65% and 6.34% greater than the FFBP20 and FFBP50 models, 

respectively.   

• For dLS, the ARMSE of the FFBP10 model is 13.07%, 13.91%, 23.73% and, 22.75% 

less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.   
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Figure 21. APEs of the predicted inter-story drifts using 10 neurons for 5-story steel MRF 

 

 
Figure 22. Prediction of inter-story drifts using 10 neurons for 5-story steel MRF 
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• For dCP, the ARMSE of the FFBP10 model is 14.13%, 13.79%, 26.14% and, 23.97% 

less than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively.   

• For dIO, the AR2 of the FFBP10 model is 17.41%, 3.98% and, 36.94% greater than 

the FFBP5, FFBP15 and FFBP50 NN models, respectively. In addition, the AR2 of 

the FFBP10 model is 1.36%, less than the FFBP20 NN model.   

• For dLS, the AR2 of the FFBP10 model is 1.64%, 7.53%, 15.95% and, 26.19% less 

than the FFBP5, FFBP15, FFBP20 and, FFBP50 NN models, respectively. 

• For dCP, the AR2 of the FFBP10 model is 0.87%, 7.22%, 17.00% and, 20.17% less 

than the FFBP5, FFBP15, FFBP20 and FFBP50 NN models, respectively.   

The numerical results demonstrate that the FFBP NN model with 10 hidden layer neurons 

outperforms the other models in predicting the inter-story drift ratios at IO, LS, and CP 

seismic performance levels.  

Figs. 21 and 22 display the APE of the predicted maximum inter-story drifts, along with 

the regression results during the training and testing phases for the NN model with the best 

prediction accuracy for 10-story steel MRF. 

 

 

6. CONCLUSIONS 
 

The primary goal of this paper is to develop a neural network-based approach for assessing 

the seismic responses of steel moment-resisting frames. The maximum inter-story drift 

ratios at IO, LS, and CP seismic performance levels are considered the desired seismic 

responses of the frames. This involves using a feedforward-backpropagation neural network 

instead of pushover static nonlinear analysis. Two numerical examples of 5- and 10-story 

steel MRFs are illustrated, and datasets containing 400 and 600 samples are randomly 

generated for them, respectively. Five feedforward-backpropagation neural network models 

with 5, 10, 15, 20, and 50 hidden-layer neurons are considered for each illustrative example. 

Notably, the model with 10 hidden layer neurons consistently outperforms the other models 

in accurately predicting inter-story drift ratios at different performance levels, as confirmed 

by the numerical results of both examples. 
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