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ABSTRACT 
 

This paper is concerned with the economical comparison between two commonly used 
configurations for double layer grids and determining their optimum span-depth ratio. Two 
ranges of spans as small and big sizes with certain bays of equal length in two directions and 
various types of element grouping are considered for each type of square grids. In order to 
carry out a precise comparison between different systems, optimum design procedure based 
on the Cuckoo Search (CS) algorithm is developed. The CS is a meta-heuristic algorithm 
recently developed that is inspired by the behavior of some Cuckoo species in combination 
with the Lévy flight behavior of some birds and insects. The design algorithm obtains 
minimum weight grid through appropriate selection of tube sections available in AISC Load 
and Resistance Factor Design (LRFD). Strength constraints of AISC-LRFD specification and 
displacement constraints are imposed on grids. The comparison is aimed at finding the depth 
at which each of the different configurations shows its advantages. The results are graphically 
presented from which the optimum depth can easily be estimated for each type, while the 
influence of element grouping can also be realized at the same time. 
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Considering the industrialization and development of the modern structures, it seems to be a 
demand for efficient and adaptable long-span structures. Double-layer grids are one of the 
most efficient and light weight space grid structural systems. It is difficult to generalize the 
most economical span-depth ratio for the space grid structures, since it is influenced by the 
method of support, type of loading and to a large extent the configuration of the system being 
employed [1]. 

This study focuses on economical comparison of two commonly used double layer grid 
configurations, namely two-way on two-way grid and diagonal on diagonal grid and 
determining their optimum span-depth ratio.  The span ranges of 15×15m and 40×40m with 
certain bays of equal length in two directions are considered as small and big sizes grids, 
respectively. Bottom layer is simply supported at the corner nodes, and as mid-edge at two 
parallel sides of the grid for the small and big span cases, respectively. The range of discrete 
depths from a certain interval with 0.5m increment is considered for each case to achieve the 
optimum depth. For determining the grouping effects various grouping patterns are applied in 
each case. 

Optimum design procedure was developed based on the Cuckoo Search algorithm to carry 
out a precise comparison between different configurations. The CS is one of the recently 
developed meta-heuristic algorithms inspired by the behavior of some Cuckoo species in 
combination with the Lévy flight behavior of some birds and insects [2]. The CS has been 
used for optimum design of steel truss structures [3] and two dimensional steel frames [4]. 
The design algorithm is supposed to obtain minimum weight grid through suitable selection of 
tube sections available in AISC-LRFD [5]. Strength constraints of AISC-LRFD specification 
and displacement constraints are imposed on grids. Moreover, two other powerful advanced 
hybrid algorithms consisting of the HPSACO [6, 7] (based on PSO, ACO and HS algorithms) 
and the HBB-BC [8] (based on BB-BC and PSO methods) are applied to carry out a precise 
assessment, and demonstrate the effectiveness and robustness of the CS. Because of time-
consuming optimization procedure, these methods are utilized only at the obtained optimum 
height and adjacent depths using the CS.  

Based on the results, the optimum depth can be estimated for each type, and the influences 
of element grouping can be realized. The comparisons of the numerical results obtained by the 
CS with those of the two other optimization methods demonstrate the efficiency and 
robustness of the CS algorithm in achieving better designs. 

 
 

2. OPTIMUM DESIGN OF DOUBLE LAYER GRIDS 
 

The allowable cross sections are considered as 37 steel pipe sections shown in Table 1, where 
the abbreviations ST, EST, and DEST stand for standard weight , extra strong , and double-
extra strong, respectively. These sections are taken from AISC -LRFD [5] which is also 
utilized as the code of design. 
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Table 1. The allowable steel pipe sections taken from AISC-LRFD 

 Type Nominal 
diameter (in) 

Weight 
per ft (lb) 

Area 
(in2) I (in4) Gyration 

radius (in) J (in4) 

1 ST 1/2 0.85 0.25 0.017 0.261 0.082 
2 EST 1/2 1.09 0.32 0.2 0.25 0.096 
3 ST 3/4 1.13 0.333 0.037 0.334 0.142 
4 EST 3/4 1.47 0.433 0.045 0.321 0.17 
5 ST 1 1.68 0.494 0.087 0.421 0.266 
6 EST 1 2.17 0.639 0.106 0.407 0.322 
7 ST 1 1/4 2.27 0.669 0.195 0.54 0.47 
8 ST 1 1/2 2.72 0.799 0.31 0.623 0.652 
9 EST 1 1/4 3.00 0.881 0.242 0.524 0.582 

10 EST 1 1/2 3.63 1.07 0.666 0.787 1.122 
11 ST 2 2.65 1.07 0.391 0.605 0.824 
12 EST 2 5.02 1.48 0.868 0.766 1.462 
13 ST 2 1/2 5.79 1.7 1.53 0.947 2.12 
14 ST 3 7.58 2.23 3.02 1.16 3.44 
15 EST 2 1/2 7.66 2.25 1.92 0.924 2.68 
16 DEST 2 9.03 2.66 1.31 0.703 2.2 
17 ST 3 1/2 9.11 2.68 4.79 1.34 4.78 
18 EST 3 10.25 3.02 3.89 1.14 4.46 
19 ST 4 10.79 3.17 7.23 1.51 6.42 
20 EST 3 1/2 12.50 3.68 6.28 1.31 6.28 
21 DEST 2 1/2 13.69 4.03 2.87 0.844 4 
22 EST 5 14.62 4.3 15.2 1.88 10.9 
23 EST 4 14.98 4.41 9.61 1.48 8.54 
24 DEST 3 18.58 5.47 5.99 1.05 6.84 
25 ST 6 18.97 5.58 28.1 2.25 17 
26 EST 5 20.78 6.11 20.7 1.84 14.86 
27 DEST 4 27.54 8.1 15.3 1.37 13.58 
28 ST 8 28.55 8.4 72.5 2.94 33.6 
29 EST 6 28.57 8.4 40.5 2.19 24.4 
30 DEST 5 38.59 11.3 33.6 1.72 24.2 
31 ST 10 40.48 11.9 161 3.67 59.8 
32 EST 8 43.39 12.8 106 2.88 49 
33 ST 12 49.56 14.6 279 4.38 87.6 
34 DEST 6 53.16 15.6 66.3 2.06 40 
35 EST 10 54.74 16.1 212 3.63 78.8 
36 EST 12 65.42 19.2 362 4.33 113.4 
37 DEST 8 72.42 21.3 162 2.76 75.2 

ST=standard weight, EST=extra strong, DEST=double-extra strong 



A. Kaveh, T. Bakhshpoori and E. Afshari 

 

510 

The aim of optimizing the grid weight is to find a set of design variables that has the 
minimum weight satisfying certain constraints. This can be expressed as: 
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where {X} is the set of design variables; ng is the number of member groups in structure 
(number of design variables); D is the cross-sectional areas available for groups according to 
Table 1; W({X}) presents weight of the grid; nm(i) is the number of members for the ith 
group; ρj and Lj denotes the material density and the length for the jth member of the ith 
group, respectively. 

The constraint conditions for grid structures are briefly explained in the following: 
Displacement constraint: 
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Slenderness ratio constraint: 
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where δi and δi

max are the displacement and allowable displacement for the ith node; nn is the 
number of nodes; nm is the total number of members and K is the effective length factor 
taken equal to 1; Pu is the required strength (tension or compression); Pr is the nominal axial 
strength (tension or compression); Ag and Ae are the cross sectional and effective net area of a 
member, respectively. 

In order to handle the constraints, a penalty approach is utilized. In this method, the aim of 
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the optimization is redefined by introducing the cost function as: 
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where υ is the constraint violation function; υi

d, υi
σ, and υi

λ are constraint violation for 
displacement, stress and slenderness ratio, respectively. ε1 and ε2 are penalty function 
exponents which selected considering the exploration and the exploitation rate of the search 
space. Here, ε1 is set to unity; ε2 is selected in a way that it decreases the penalties and reduces 
the cross-sectional areas. Thus, in the first steps of the search process, ε2 is set to 1 and 
ultimately increased to 3 [9]. 

 
 

3. OPTIMIZATION ALGORITHMS 
 

Methods employed in structural optimization design problems can be divided into 
mathematical programming and meta-heuristic algorithms. Due to the difficulties encountered 
in mathematical programming (complex derivatives, sensitivity to initial values, and the large 
amount of enumeration memory required) [10] for complex problems, various kinds of meta-
heuristic algorithms have been developed for optimum design of steel structures. The meta-
heuristic algorithm selected for the solution of optimum discrete design of double layer grids 
is the Cuckoo Search algorithm. As stated before, two other powerful advanced hybrid 
algorithms, the HPSACO and the HBB-BC are also employed to gain a precise assessment 
and show the effectiveness of the CS. In the following subsections, the computational steps of 
the CS are briefly overviewed [4].     

 
3.1. Cuckoo search algorithm 

This algorithm is based on the obligate brood parasitic behavior of some Cuckoo species 
in combination with the Lévy flight behavior of some birds and fruit flies, which is 
recently developed by Yang [2]. These species lay their eggs in the nests of other host 
birds (almost other species) with amazing abilities such as selecting the recently spawned 
nests, and removing existing eggs that increase hatching probability of their eggs. On the 
other hand, some of the host birds are able to combat this parasites behavior of Cuckoos, 
and throw out the discovered alien eggs or build their new nests in new locations. This 
algorithm contains a population of nests or eggs. For simplicity, following representations 
is used; each egg in a nest represents a solution and a Cuckoo egg represents a new one. 
If the Cuckoo egg be very similar to the host’s, then this Cuckoo’s egg is less likely to be 
discovered, thus the fitness should be related to the difference in solutions. The aim is to 
employ the new and potentially better solutions (Cuckoos’) to replace a not-so-good 
solution in the nests [11].  

The Lévy flight is a random process in which a series of consecutive random steps perform 
with a power-law step-length distribution with a heavy tail. The generation of random 
numbers with Lévy flights includes two steps: choice of a random direction, and the 
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generation of steps which obey the chosen Lévy distribution, while the generation of steps is 
quite tricky. There are a few ways to achieve this, but one of the most efficient and yet 
straightforward ways is to use the so-called Mantegna algorithm [2]. 

The original version of the CS [2] is sequential, and each iterations of the algorithm 
consists of two main steps, but another version of the CS which is supposed to be different 
and more efficient, is provided by Yang and Deb [11]. In this study the later version of the CS 
algorithm is utilized. The pseudo code of optimum design algorithm can be summarized as 
follows [4]: 

 
3.1.1. Initialize the Cuckoo Search algorithm parameters 

The CS parameters are set in the first step. These parameters are the number of nests (n), step 
size parameter (α), discovering probability (pa) and maximum number of grid analyses as the 
stopping criterion.  

 
3.1.2. Generate initial nests or eggs of host birds 

The initial locations of the nests are determined by the set of values assigned to each decision 
variable randomly as 

 
( )(0)

, ,min ,max ,min.( )i j j j jnest ROUND x rand x x= + −  (7) 
 

where nesti,j
(0) determines the initial value of the jth variable for the ith nest; xj,min and xj,max are 

the minimum and the maximum allowable values for the jth variable; rand is a random 
number in the interval [0, 1]. The rounding function is used because of the discrete nature of 
the problem. 

 
3.1.3. Generate new Cuckoos by Lévy flights  

In this step all of the nests except for the best so far, are replaced in order of quality by new 
Cuckoo eggs produced with Lévy flights from their positions as 

 
( 1) ( ) ( ) ( ). .( ).t t t t
i i i bestnest nest S nest nest rα+ = + −  (8) 

 
where nesti

t is the ith nest current position, α is the step size parameter; S is the Lévy flights 
vector as in Mantegna’s algorithm ; r is a random number from a standard normal distribution 
and nestbest is the position of the best nest so far. 

 
3.1.4. Alien eggs discovery 

The alien eggs discovery is preformed for all of eggs but in term of probability matrix for each 
component of each solution such as: 
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1          
0         ij

if rand pa
P

if rand pa
<

=  ≥
 (9) 

 
where rand is a random number in [0, 1] interval and Pij is discovering probability for jth 
variable of ith nest. Existing eggs are replaced considering quality by newly generated ones 
from their current position by random walks with step size such as: 

 
( ) ( )( ). ( ),: - ( ),:

.*t 1 t

S rand nests randperm n nests randperm n

nest nest S P+

=

= +
 (10) 

 
where randperm is a random permutation function is used for different rows permutation 
applied on nests matrix and P is the probability matrix. 

 
3.1.5. Termination criterion 

The generating of new Cuckoos and discovering the alien eggs steps are performed 
alternatively until a termination criterion is satisfied. The maximum number of grid analyses is 
considered as algorithm’s termination criterion. 

 
 

4. STRUCTURAL MODELS 
 

Two commonly used configurations for double layer grids considered in this study are two-
way on two-way and diagonal on diagonal square grids. Two ranges of spans 15×15m and 
40×40m with certain bays of equal length in two directions are considered as small and big 
size spans. Simply supported condition is employed for bottom layer at the corner nodes, and 
mid-edge at two parallel sides for the small and big span cases, respectively. The range of 
discrete depths from a certain interval with 0.5m increment is considered for each case to 
achieve the optimum depth. 

Three element grouping patterns namely GP1, GP2 and GP3 are introduced for the 
purpose of practical fabrication and determining the grouping effects on the different systems. 
Considering different sections for elements at top layer, bottom layer and diagonal elements 
leads to the first grouping type which is only applied to the 15×15 span case with three design 
variables. In the second one, the elements at top layer, bottom layer, and diagonal elements are 
put into different groups in a diamond-like manner around central node. The GP3 grouping 
pattern is the same as the second one, but it is in a square form. The configuration, support 
locations and element grouping patterns of double layer grids are shown in Figure 4. Due to 
symmetry, only a quarter of the 15×15m span case is shown in this figure. The element 
grouping in the form of GP2 is depicted by black and light hatching. 
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(c) (d) 

Figure 1. Topology, element grouping, support locations for different cases; (a) 15×15m two-way 
on two-way grid, (b) 15×15m diagonal on diagonal grid, (c) 40×40m two-way on two-way grid, 

(d) 40×40m diagonal on diagonal grid 
 
 

5. THE NUMERICAL EXAMPLES 
 

The double layer grids are assumed as pin-jointed, and top-layer joints are subjected to 
concentrated vertical loads transmitted from the uniformly distributed load of 200kg/m2. 
Stress and slenderness constraints (Eqs. (3), (4) and (5)) according to AISC-LRFD 
provisions, and displacement limitations of span/600 were imposed on all nodes in vertical 
direction. The modulus of elasticity is taken as 205 kN/mm2 and the yield stress of steel is 
taken as 248.2 MPa. 
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The parameters of the CS algorithm are considered as n=7, α=0.1 and pa=0.3 [4]. A 
population of 50 individuals is used for HPSACO and HBB-BC algorithms. In HPSACO 
algorithm, the value of constants C1 and C2 are set to 0.8 and passive congregation coefficient 
C3 is taken as 0.6. The value of inertia weight ω(k) is altered linearly from maximum value to 
minimum value, which maximum and minimum of ω(k) is 0.9 and 0.4 in first iteration and last 
iteration, respectively [7]. The amount of step size η in ACO stage is recommended 0.01 [12]. 
HMCR is set to 0.95 and PAR is taken as 0.10. In HBB-BC algorithm coefficient of α1=1, 
α2=0.4 and α3=0.8 are used [8]. The maximum numbers of grid analyses equaling to 4000, 
6000 and 10,000 are considered as termination criteria for GP1, GP2 and GP3 grouping 
patterns in small span case and as 10,000 for both grouping patterns in big span case, 
respectively. The HBB-BC and the HPSACO algorithms are only used for obtained optimum 
depth by the CS algorithm and two adjacent depths. Considering the effect of the initial 
solution on the final results and the stochastic nature of the meta-heuristic algorithms, each 
case is independently solved for five times with random initial designs.  Afterwards the best 
run is chosen for performance evaluation of each technique. The design algorithms are coded 
in MATLAB and structures are analyzed using the direct stiffness method [13]. 

 
Example 1: The 15×15 m double layer square grid 
The 15×15 span case is studied as the small size of double layer grids. The first common type 
is the two-way on two-way grid which contains 85 nodes and 288 members, and the second 
one is the diagonal on diagonal grid with 145 nodes and 528 members. Each span contains 6 
bays of equal length in both directions. Grouping patterns of GP1 and GP2 lead to 3 and 9 
design variables for each type. The third grouping pattern yields 14 and 19 design variables 
for two-way on two-way and diagonal on diagonal grids, respectively. The range of discrete 
depths from [1, 4] interval with 0.5m increment is considered for each type to achieve the 
optimum depth.  
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Figure 2. Obtained best results for the 15×15 span grid; (a) Two-way on two-way grid, (b) 
Diagonal on diagonal grid  

Figure 2 shows the obtained optimum weight for various grouping patterns and depths of 
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grids. As depicted, the optimum height of grid for both types equals to 1.5m and is 
independent of grouping pattern except for the case of GP1 in the second type which has the 
optimum depth of 2m. More importantly, the GP3 grouping type with more design variables 
results in heavier designs than that of GP2 grouping type for two-way on two-way grid. It is 
also worth mentioning that without considering number and complexity of joints, diagonal on 
diagonal grid for small spans is more suitable than two-way on two-way grid for GP1 
grouping pattern containing three element groups often favored by engineers and architects 
because of its convenience and appealing features.   

 
Table 2. Performance comparison for the 15×15 grid (kg) 

Two-way on two-way grid 
GP3 GP2 GP1  

Height=
2 Height=1.5 Height=1 Height=2 Height=1.5 Height=1 Height=2 Height=1.5 Height=1  

4920.27
6 4751.817 7006.406 4153.159 4127.063 7244.872 6768.999 6598.641 8931.492 CS 

6550.50
1 5541.080 6999.783 4363.474 4371.717 7250.741 6768.999 6598.641 8931.492 HBB-BC 

5478.96
0 5056.159 7140.266 4533.831 4360.259 7235.120 6768.999 6598.641 8931.492 HPSACO 

Diagonal on diagonal grid 
GP3 GP2 GP1  

Height=
2 Height=1.5 Height=1 Height=2 Height=1.5 Height=1 Height=2 Height=1.5 Height=1  

4654.21
5 4180.124 5402.767 4978.462 4757.806 6319.767 6002.888 5927.232 7471.287 CS 

5931.22
2 5749.242 5643.173 6099.758 5104.293 6209.962 5590.446 5927.232 7471.287 HBB-BC 

6373.70
1 5270.756 6157.951 5097.121 4873.785 6203.467 5590.446 5927.232 7471.287 HPSACO 
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Figure 3. Convergence history obtained with meta-heuristic algorithms for the two-way on two-

way 15×15 double layer grid (GP2 and depth= 1.5m)   
Table 2 presents the performance of the CS and two other methods in which the best 

obtained weight is hatched for each case. It is apparent from the table that Cuckoo search has 
produced the lightest designs except for some cases with subtle differences. In the GP1 case 
in which the problem has only 3 design variables, all methods approximately yield the same 
design. For graphical comparison of algorithms, the convergence histories for the best result of 
5 independent runs are shown in Figure 3 for the two-way on two-way, GP2 and depth = 
1.5m. Table 3 shows the best solution vectors, the corresponding weights and the required 
number of analyses for three methods. 

 
Table 3. Performance comparison for the 15×15 grid 

Optimal cross sectional area (in2) 
Element group 

CS HBB-BC HPSACO 
1 A1 1.48 1.48 1.48 
2 A2 1.7 1.7 3.17 
3 A3 2.23 2.23 2.23 
4 A4 0.669 0.669 0.799 
5 A5 2.23 2.23 2.25 
6 A6 0.799 0.799 0.799 
7 A7 0.639 0.669 0.639 
8 A8 1.48 2.66 1.48 
9 A9 0.669 0.669 0.669 

Best weight (lb)  9098.62 9637.99 9612.73 
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No. of analyses  4186 5950 6000 
 

Example 2:  The 40×40m double layer square grid 
The 40×40m span case is considered as a big size of double layer grids. First common type is 
two-way on two-way grid which contains 221 nodes and 800 members. Second one is 
diagonal on diagonal grid with 401 nodes and 1520 members. Each span contains 10 bays of 
equal length in both directions. First grouping pattern is ignored in this case because of the 
size of structure. Grouping pattern of GP2 leads to 15 design variables for both types. Third 
grouping pattern leads to 24 and 31 design variables for two-way on two-way and diagonal on 
diagonal grids, respectively. The range of discrete depths from [1, 5] interval with 0.5m 
increment is considered for each type to achieve the optimum depth. 

Figure 4 shows the obtained optimum weight for various grouping patterns and depths of 
grids. As depicted, the curves of different groups are approximately coincided with subtle 
differences. It should be noted that the GP2 is a more suitable way for grouping these two 
common types of big size double layer grids, because of the fewer number of groups. It is 
shown that optimum height of first type is equal to 3 and 3.5m and the second one equals 4 
and 3.5m for GP2 and GP3, respectively. It can also be found that the slope of curves is 
smooth after the optimum height. In the other words, the optimum design is approximately 
independent of the depths bigger than 3m. 

 Table 4 in which the best obtained weight is hatched for each case presents the 
performance of algorithms. It can be realized that two-way on two-way type is more suitable 
for big span cases with the same number of span divisions (without considering the number 
and complexity of joints), in terms of the resulting low weight designs in a way that the 
obtained optimum designs are 38 and 33 percent lighter than those of diagonal on diagonal 
one for GP1 and GP2 cases, respectively. It is apparent from the table that Cuckoo Search has 
produced the lightest designs in all cases. The CS performs far better than the HBB-BC and 
the HPSACO algorithms in reaching low weight designs in the 40×40m span case which 
could be considered as approximately large-scale problems with more number of design 
variables and design constraints. To make the comparison of algorithms more tangible, the 
best obtained designs for different amount of depths are depicted as a bar-chart in Figure 5.  

 

1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

5

Layer Thickness (m)

O
pt

im
um

 W
ei

gh
t (

K
g)

 

 

GP2
GP3

 
1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Layer Thickness (m)

O
pt

im
um

 W
ei

gh
t (

K
g)

 

 

GP2
GP3 

 



AN OPTIMIZATION-BASED COMPARATIVE STUDY OF DOUBLE LAYER... 
 

 

519 

(a) (b) 

Figure 4. Obtained best results for the 40×40 span grid for grouping patterns; (a) Two-way on 
two-way grid, (b) Diagonal on diagonal grid 

 
Table 4. Performance comparison for the 15×15 grid (kg) 

Two-way on two-way grid 
 GP1 GP2 
 Height=3 Height=3.5 Height=4 Height=2.5 Height=3 Height=3.5 

CS 61564.751 59709.748 65272.400 71274.797 58474.360 64833.546 
HBB-BC 80776.255 70748.113 92783.126 82342.363 79576.315 90213.388 
HPSACO 82866.081 85118.951 102055.248 88623.380 79390.971 96137.848 

Diagonal on diagonal grid 
 GP1 GP2 
 Height=3.5 Height=4 Height=4.5 Height=3 Height=3.5 Height=4 

CS 97965.173 95661.984 99775.377 89729.390 86883.682 93751.030 
HBB-BC 113690.418 113987.966 135809.980 131973.303 120917.170 149910.633 
HPSACO 133017.343 112800.347 124293.047 131363.973 129412.670 149261.498 
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Figure 5. Obtained best results for the 40×40m span grid by three algorithms; (a) Two-way on 
two-way grid, (b) Diagonal on diagonal grid 

 
 

6. CONCLUDING REMARKS  
 

The paper presents an economical comparison between tow-way on two-way and diagonal on 
diagonal square grids as common types of double layer grids. Two ranges of spans as small 
and big size of double layer square grids are considered with simply supported conditions at 
corners and semi full edge at two parallel sides for small and big cases, respectively. For 
precise comparison, an optimization study is carried out with the objective of minimizing self-
weight based on CS, HBB-BC and HPSACO meta-heuristic algorithms. Grids were designed 
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in accordance with AISC-LRFD specifications and displacement constraints. The results 
revealed in this study can be used for double layer grids in nearly similar conditions without 
considering the number and complexity of joints. 

 In small span cases both types conduct nearly the same-weight designs and it should be 
noted that diagonal on diagonal type has more connections and members. Using GP1 grouping 
pattern, which contains 3 design variables and has architectural and structural advantages for 
small cases (compared with other grouping patterns), leads to less consumption of materials in 
diagonal on diagonal system than that of two-way on two-way system. The optimum span-
depth ratio for small span cases can be considered as 10 for both types. 

In addition to fewer number of nodes in two-way on two-way grid, this type leads to lighter 
designs than diagonal on diagonal grid by approximately 35 percent for both grouping patterns 
in big span cases. In this case, a span-depth ratio between 8 and 13 can be considered 
acceptable, though the optimum value is approximately 13 for both groups. 

The comparisons of the numerical results obtained by the CS with those by two others are 
carried out to demonstrate the robustness of the CS in achieving the best designs. Based on 
the study, it can be indicated that CS results in lighter designs especially in complicated cases.  
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