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ABSTRACT 
 

For reliability-based topology optimization (RBTO) of double layer grids, a two-stage 
optimization method is presented by applying “Solid Isotropic Material with Penalization” 
and “Ant Colony Optimization” (SIMP-ACO method). To achieve this aim, first, the 
structural stiffness is maximized using SIMP. Then, the characteristics of the obtained 
topology are used to enhance ACO through six modifications. As numerical examples, 
reliability-based topology designs of typical double layer grids are obtained by ACO and 
SIMP-ACO methods. Their numerical results reveal the effectiveness of the proposed SIMP-
ACO method for the RBTO of double layer grids.  
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1. INTRODUCTION 
 

Topology optimization, which involves distributing a given amount of material in a domain 
subjected to certain loading and support conditions so as to optimize a given objective 
function, has been recognized as one of the most challenging tasks in structural design [1]. A 
topology optimization method enables designers to find an acceptable material formation for 
the required performances of systems [2]. This type of optimization is a relatively new but 
extremely rapidly expanding research field, which has interesting theoretical implications in 
mathematics, compliant mechanisms [3 and 4], multi-physics [5 and 6] and multi-material [7] 
and also important practical applications by the manufacturing car and aerospace industries in 
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particular and is likely to have a significant role in nanotechnologies [8]. 
Many optimization methods and algorithms have been developed in the past decades for 

both linear and nonlinear structural problems in many disciplines such as solid mechanics, 
thermal, eigenvalue, and acoustic problems [2].  

Nowadays, the most reasonable numerical finite element-based topology optimization 
method is the SIMP method which has been developed in the late eighties. It is sometimes 
called “material interpolation”, “artificial material”, “power law”, or “density” method, but it 
is currently known as “SIMP” [8]. The term “SIMP” stands for Solid Isotropic Microstructure 
(or Material) with Penalization for densities between 0 and 1. The basic idea of this method 
was proposed by Bendsoe [9], while the term “SIMP” was created later and first introduced in 
a paper by Rozvany et al. [10]. In recent years, SIMP has been popularly accepted in the 
topology optimization community for its conceptual and implementing simplicity, since in this 
method the only design variable of each element is its pseudo-density and the material 
property is assumed to be constant within each element [11]. It must be noted that, Sigmund’s 
educational article [12] with a 99-line SIMP-code and his web-based topology optimization 
program [13] played an important role in general acceptance of SIMP.  

Topology optimization has become increasingly popular in a wide range of industries 
including automotive, aerospace, heavy industry, etc. partly because of development and 
promotion through commercial Finite Element Analysis (FEA) software (e.g., OptiStruct, 
Genesis, MSC/Nastran, Ansys, Tosca, etc.) [8]. All software have implemented the SIMP 
method, except Tosca that has used an Evolutionary Structural Optimization (ESO) type 
method [8]. Recent publications [14] indicate that Tosca has also started to adopt the SIMP 
approach combined with the Method of Moving Asymptotes (MMA) [8]. 

In skeletal structures, topology optimization methods using the ground structure approach 
are effective at the conceptual design stage. Real structural behavior are subject to uncertain 
conditions such as applied loads, material properties, and dimensional variation due to 
manufacturing factors. Because these uncertainties may affect desired performances, there is a 
great need for optimization methods which can effectively work despite having uncertain 
conditions. Reliability-based topology optimization is a useful strategy to consider such 
uncertainties [15 and 16]. 

The ACO is a relatively recent heuristic method for solving optimization problems through 
simulating the behavior of real ant colonies. Similar to genetic algorithm (GA), ACO is a good 
choice for structural topology optimization due to discrete characteristics of the structures. 
Recently some researchers have employed ant algorithms for topology optimization of 
continuous and discrete structures [17 and 18]. In skeletal structures topology optimization, 
the operation of these heuristic methods can be increased if they are combined with gradient-
based methods. For example, in [19] a two-stage optimization method has been introduced for 
RBTO of double layer grids which has been performed by employing the methods of moving 
asymptotes (MMA) and ACO. Also, an ESO-ACO method has been presented in [20] which 
consists of the evolutionary structural optimization (ESO) and ant colony optimization (ACO), 
for minimizing the weight of double layer grid while artificial ground motion is used for 
calculating the structural dynamic responses.  

This paper discusses a reliability-based topology optimization that uses ground structure 
approach for double layer grids. In this approach, a new combined method for RBTO of 
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double layer grids is presented that considers uncertainties in applied loads. The optimization 
is performed using “solid isotropic material with penalization” (SIMP) and “ant colony 
optimization” (ACO) method, which is called SIMP-ACO method. To execute SIMP-ACO, 
first, an introductory optimization is performed using SIMP in which the structural stiffness is 
maximized and the optimum cross-sectional areas are calculated from continuous quantities. 
Then, the obtained topology, optimum cross-sectional areas, and the internal forces of 
members (elements) are employed for improving the ACO approach through the following six 
modifications: (I) using the obtained topology as a new ground structure, (II) size optimization 
of the new ground structure to be considered as a good initial design, (III) finding the 
structural importance rate of elements and using it to assign an unequal amount of pheromone 
on the paths that associates with the presence or absence of the member (element) variables, 
(IV) limiting the lower limit of available cross-sectional areas of each element group, (V) 
determining the number of compressive and tensile element types, and (VI) modifying the 
generation of random stable structures.  

Two criteria, i.e. stiffness and eigenvalue, are considered as two failure modes and the 
failure probability of these modes is evaluated by combining Monte Carlo Simulation (MCS) 
and third order approximation (TOA) [19]. 

In several numerical examples, the optimum topologies of double layer grids which 
obtained by SIMP-ACO and ACO are compared. The numerical results reveal the capability 
and robustness of SIMP-ACO for topology optimization of large scale skeletal structures with 
discrete cross-sectional areas and various constraints. 

 
 

2. STRUCTURAL RELIABILITY ANALYSIS 
 

Reliability analysis is a tool to compute the probability of failure corresponding to a given 
failure mode. A reliability analysis is normally formulated using a limit state function, g(Z), 
where Z is the vector of random variables. The condition g(Z)≤0 defines violation of the limit 
state, and so, the failure probability is expressed by the following expression [21]: 

 

 ∫ ≤
=≤=
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)(]0)([
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(1) 

 
where fZ is the joint probability density function. 

For complex and/or large-scale structures, the structural responses have to be calculated by 
a numerical procedure such as finite element analysis. In such cases, several computational 
approaches could be pursued to the solution of (1). These can be divided into three categories 
[21]: (a) Monte Carlo simulation, (b) semi-probabilistic methods, and (c) approximate 
probabilistic methods. 

Monte Carlo simulation (MCS) is a simulation method that presents the following 
characteristics: it can be applied to many practical problems which have implicit limit state function; 
it is able to calculate the failure probability with the desired precision; it is easy to use. 

To calculate fp  using MCS, for each random vector Z a sufficient number of N 
independent random samples is produced using a specific probability density function. The 
value of the limit state function is calculated for each random sample Zj , and the Monte Carlo 



M. Mashayekhi, J. Salajegheh, M.J. Fadaee and E. Salajegheh 

 

524 

simulation estimate of fp  is given in terms of the sample mean by: 
 

 N
Np H

f =
 

(2) 

 
where NH is the number of cases which are in failure domain (g(Z)≤0).  

 
 

3. FAILURE CRITERIA IN RELIABILITY-BASED TOPOLOGY 
OPTIMIZATION 

 
For the reliability-based topology optimization of double layer grids, two criteria are 
introduced. The first one is the compliance which is used for static criterion (SC); the other is 
the eigenvalue which is used for dynamic criterion (DC) [19]. 

The compliance is introduced as a quantity of the structural stiffness defined as follows: 
 

 dKFdF == ,TSC  (3) 
 

where K is the global stiffness matrix, and F and d are the load and displacement vectors, 
respectively. 

The jth eigenvalue can be evaluated by the Rayleigh quotient as [19]: 
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where φj is the eigenvector corresponding to the jth eigenvalue (λj), MC is the global mass 
matrix of structural elements, ML(zM) is the lumped mass matrix of distributed non-structural 
mass zM, MM denotes the mean applied distributed non-structural mass, and MM

LM is the 
lumped mass matrix of MM. This distributed non-structural mass is assigned to the nodes of 
the top grid in the proportion of their load bearing area. In the present article the following 
dynamic criterion is adopted [19]: 

 
π
λ

2
1=DC  (6) 

 
 

4. DOUBLE LAYER GRIDS RELIABILITY ANALYSIS 
 

When the applied load or the non-structural mass are not certain values, the static criterion (3) 
and the dynamic criterion (6) also exhibit variations, which results in a deleterious effect upon 
the performance of double layer grids. The degree of degradation in performance is evaluated 
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based on structural reliability theory, and such variations are, therefore, modeled as 
probabilistic random variables. The double layer grid is failed when the static criterion SC is 
higher than the prescribed upper bound SCU , or the dynamic criterion DC is lower than the 
prescribed lower limit DCL. Therefore, the following two limit state functions are introduced 
[19]: 
 )()(1

AL
U

AL SCSCg ZZ −=  (7) 
 

 L
MM DCDCg −= )()(2 ZZ  (8) 

   
where ZAL is random vector consisting of the applied load.  

The double layer grid is failed when either of the limit state functions in (7) and (8) has a 
negative value. That is, the system is modeled as a system consisting of two iterative failure 
modes [19]. 

 
 

5. TOPOLOGY OPTIMIZATION 
 

In double layer grids topology optimization, geometry of the structure, support positions, and 
coordinates of nodes are kept constant while the presence or absence of the elements and also 
cross-sectional areas are selected as design variables. The symmetry properties of the 
structure are used for the tabulation of elements which lead to decrease in the design space. 
Therefore, the elements are deleted in groups of 8 or 4 [20]. Presence or absence of each 
element group is identified by a variable (topology variable), taking 1 and 0 for two cases, 
respectively. A zero amount of the ith topology variable indicates that the ith element group 
should be deleted from the ground structure. In this optimization problem, the number of 
design variables (NDV) is the summation of the number of topology variables (NTV), and the 
number of compressive and tensile member types [19 and 20].  

Discrete variables are used for determining the suitable cross-sectional area of structural 
members. These variables are selected from pipe sections with specified thickness and outer 
diameter. Topology optimization is carried out in two cases which their details are presented 
as follows: 

 
5.1. Deterministic topology optimization (DTO) 

In deterministic optimum topology design of the double layer grids, the optimum values of 
design variables are found from discrete values to minimize the weight of the structure (W) 
under constraints on stress (gσ), slenderness ratio (gλ) and displacement (gδ): 
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where NMG is the number of member groups, Nk is the number of members in kth member 
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group, ak is the discrete cross-sectional area of the kth member group selected from steel pipes 
in a given profile list ( A~ ), ρe is the material density, and li is the length of the ith element.  

The stress and the slenderness ratio constraints are as follows: 
 

 ∑ −= k
k
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where kσ  is the member stress, kσ  is the allowable stress, kλ is the member slenderness ratio, 
and kλ  is its upper limit for the kth member of double layer grids. In this study, the AISC 
code provisions [22] are employed for the stress limits and local buckling criteria as follows: 
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where yF  is the yield stress, E  is the modulus of elasticity, and cC  is taken as yFE22π . 

The maximum slenderness ratio is limited to 300 and 240 for tension and compression 
members, respectively. Hence, the slenderness related design constraints can be formulated as 
follows: 
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where Kk is the effective length factor of the kth member (Kk= 1 for all truss members), and rk 
is its radii of gyration. 

In the optimization process, the allowable vertical displacement (δV) is adopted as the width 
of double layer grids divided by 360 [23]. So, the displacement constraint is expressed as 
follows: 
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where δj is the displacement of the jth node. 
 

5.2. Reliability-based topology optimization (RBTO) 

In RBTO of double layer grids, the optimum value of A  is found from discrete values to 
minimize W under the constraints on system failure probability (gf), stress, displacement, and 
slenderness ratio: 
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UP  is the failure probability upper limit in the ith failure mode. The system failure 

probability in each mode ),( 21
ff PP  is obtained from (2). 

In each case of topology optimization, the optimization problems (9) and (16) will be 
solved using ACO and SIMP-ACO. To solve a constrained optimization problem, its objective 
function (W) should be modified in such a way that the constrained problem should be 
converted to an unconstrained one, with a modified objective function )(Ψ , where Ψ  is 
defined as:  
 2)1( CW +=Ψ  (18) 
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where C  is the penalty function, ne is the number of elements, and nj is the number of joints.  

The optimum topology design of double layer grids is a minimization problem and hence, 
the fitness function must be chosen such that the higher the weight of the structure, the lower 
its fitness is and vice-versa. The following relation is selected as the measure of fitness 
function [24]: 
 
 iiF Ψ−Ψ+Ψ= minmax  (20) 
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where maxΨ , minΨ  , and iΨ  are the maximum and minimum modified objective function 
values in a cycle and the modified objective function value of the ith structure, respectively. 

 
 

6. TWO-STAGE OPTIMIZATION METHOD (SIMP-ACO) 
 

In this paper, in order to achieve better topology using ACO, the location of members with 
high structural importance is identified by SIMP. To achieve this aim, the structural stiffness 
is maximized using SIMP approach, where the objective is to minimize the compliance. The 
optimization problem can be written as follows [12]: 
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where V(a) is the material volume, a is a real-valued vector in a bounded space Â , and f 
(volfrac) is the prescribe volume fraction. It must be noted that in [12], to avoid the structural 
instability, the nonzero amounts have been assigned to the cross-sectional areas, but in the 
present work, the zero value can be allocated to them, too. 

After solving the optimization problem (21), the optimum topology, the obtained optimum 
cross-sectional areas, and the internal forces of members are used to accomplish the following 
six modifications (Sections 6.1-6.6). With these adaptations, ACO effectively results in the 
optimum topology such that all of the stress, displacement, slenderness ratio, and reliability 
constraints are satisfied, and the cross-sectional areas are selected from iscrete quantities (i.e. 
solving Eqs. (9) and (16)). 

 
6.1. Using the obtained topology as a new ground structure 

The optimization problem (21) is solved to achieve a better solution for (9) and (16). In this 
paper, during the optimization procedure of (21) using SIMP, some of the redundant elements 
are removed. Therefore, if the number of removed elements are controlled, the obtained 
topology can be a good initial configuration for solving (9) and (16). To achieve this aim, the 
obtained topology of (21) is used as a new ground structure. In the new ground structure there 
are lower elements than the initial one, therefore, the search space is reduced. It is noted that 
since the optimum topology problem (9) is different from (16), and because of the existing of 
different deterministic and reliability constraints during the solution of (21), the dissimilar 
termination conditions must be chosen. 
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6.2. Size optimization of the new ground structure to be considered as a good initial design 
for ACO 

In initial optimization stages of large scale skeletal structures, there is not any relation between 
topology and cross-sectional area variables which is a challenging issue in the topology 
optimization process. To improve this deficiency, the optimum cross-sectional areas are 
determined for the new ground structure obtained in the previous section, while the constraints 
of (9) or (16) are satisfied using ACO. Then, the optimum structure is considered as an initial 
design when the optimization problem (9) or (16) is solved.  

 
6.3. Calculating the pheromones of the topology variables [20] 

The rate importance of the ith group elements (IRi) is calculated as follows: 
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where MAi is the cross-sectional area of a member of the ith group and nbwe is the number of 
bottom and web grids elements. 

Thereafter, the pheromone of the ith topology variable is identified as follows: 
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where τ(i,1) and τ(i,2) are the pheromone of the absence and presence of ith group elements, 
respectively. Therefore, more IRi means more presence pheromone of the ith group elements 
and the probability of existing of such elements in the structure increases. τmin is the minimum 
pheromone which is determined as follows [25]: 
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6.4. Enhancing the generation of new random stable structures [20] 

Numerous unstable structures are produced in topology optimization procedure of double 
layer grids using ACO and SIMP-ACO. In this article, after finding each unstable structure, a 
new structure is randomly constructed and then its stability is checked. This process is 
continued until a stable structure is obtained. To increase the efficiency of SIMP-ACO for 
producing a new structure, ith group elements will be deleted randomly from the new ground 
structure if the following relationship is satisfied:  
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 minIRIRi ≤  (26) 

 
where IRmin is the minimum importance rate. Selecting a small amount of IRmin removes a few 
number of elements. Also, if IRmin is selected a value near to one, large number of elements 
are subjected to be deleted randomly. Therefore, the removing chance of elements which have 
large and small amount of IR, will be equal. So, the amount of IRmin should be chosen such 
that the proper number of elements  be deleted by chance [19].  

 
6.5. Identifying the number of compressive and tensile member types [20] 

After solving the optimization problem (21), the member forces are found. With consideration 
of the stress and slenderness ratio constraints in design stage, the proper cross-sectional area is 
chosen from the available profiles for any member with tensile and compressive internal force. 
After designing all of the members, those that have the same cross-sectional area are located 
in the same type with respect to the compressive and tensile internal force. Then, computing 
the various cross-sectional areas determines the number of compressive and tensile element 
types. 

 
6.6. Shortening the available list profile for elements of each type [20] 

The assigned profile to each element in Section 6.5 is based on the optimization problem (21) 
which has only two constraints. When in the optimization problem there are several 
deterministic and reliability constraints, greater cross-sectional area should be probably 
assigned to the elements. Therefore, the allocated cross-sectional area to the elements in 
Section 6.5 can be considered approximately as the lowest limit of the available profile. To 
have more security, the following relationship is suggested to the lowest limit of available 
profile for ith element types (lbi): 

 
 NMGilbNPdplb iii ...,,2,1,1),(1.0 =≥−=  (27) 

 
where dpi is the digit of the profile for the ith element types which is calculated in section 6.5. 

The process of SIMP-ACO method is schematically shown in Figure 1. 
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Determining the number of compressive and tensile element types 
 

Identifying the pheromones of the topology variable 

Reduction the available list profile for elements of each type 

END 

Setting parameters 

Maximizing the structural stiffness, (21) 

Topology optimization of structure by ACO [20], while the resulted optimum 
topology of (21) is considered as a new ground structure and the random stable 

structures are produced using Section 6.4 

Initialization 

Size optimization of the obtained topology of (21), using 
ACO, to consider as a good initial design for (9) and (16) 

Topology optimization 

 
Figure 1. The process of SIMP-ACO method 

 
It is noted that the amendment described in Section 6.3 is employed specially for ACO. 

While the optimization problem of (9) or (16) is solved using other heuristic optimization 
methods such as GA and PSO, the other general improvements which are described in 
Sections 6 (except Section 6.3), can be used to enhance their solutions. 

 
 

7. EXAMPLE: 20×20 DOUBLE LAYER GRID 
 

A square-on-square double layer grid with 841 nodes (joints) and 3200 members (elements) is 
presented to examine and verify the proposed optimization method. In [19], the presence or 
absence of the bottom joints is considered as topology variables, but in this article, the 
presence or absence of the elements is considered as topology variables. Therefore, the bottom 
and web elements are tabulated in 310 different groups (NTV=310) instead of NTV=55 in 
[19]. The depth of the double layer grid is 450 cm and the node spacing in the top and bottom 
chord is 300 cm. The ground structure is assumed to be supported at perimeter nodes of 
bottom grid (Figure 2) [19]. 
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Figure 2. A 20×20 Double layer grid [19] 
 
The assumed material is steel with a Young’s modulus and material density as 

2.1×106kg/cm2 and 7850kg/m3, respectively. These material constants are assumed to have 
deterministic values. Gravity acceleration is considered as 981 cm/s2. The random variable is 
assumed to be normally distributed. The mean and the standard deviation of distributed 
applied load on double layer grid are 1765.8 N/m2 and 176.58 N/m2, respectively.  

The cross-sectional area of members is selected from the pipe profiles available in Table 1, 
where OD is the outer diameter and T is the thickness in centimeter [19]. The number of ants, 
γ, ρ, and θ are selected as 100, 10, 0.5, and 0.67, respectively [26]. The computational results 
show that the other specifications of ACO and SIMP-ACO which are shown in Table 2 are 
good choices.  

 
Table 1. Available pipe profiles [19] 

No. OD T No. OD T No. OD T No. OD T 

1 4.83 0.26 6 10.80 0.36 11 16.86 0.45 16 32.39 0.71 

2 6.03 0.29 7 11.43 0.36 12 19.37 0.45 17 35.56 0.80 

3 7.61 0.29 8 13.30 0.40 13 21.91 0.45 18 40.64 0.88 

4 8.89 0.32 9 13.97 0.40 14 24.45 0.63 19 45.72 1.00 

5 10.16 0.36 10 15.90 0.45 15 27.30 0.63    

 

Table 2. Specifications of ACO and SIMP-ACO methods 

Parameter α β IRmin 

Value 1 0.2 0.18 
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Bendsoe and Sigmund [27] have proved that the physical microstructures of SIMP scheme 

would exist with the satisfaction of some simple conditions (e.g. penalty exponent p≥3 for 
Poisson’s ratio 1/3). A reasonable penalty exponent should be necessarily appointed [11]. 

In [12], the proper amounts of f and p are determined as 0.5 and 3, respectively; for 
topology optimization of continuous structures the Poisson’s ratio is considered as 0.3. In the 
present paper, the proper amounts of these parameters are chosen so that before the structural 
instability, the most number of elements are removed from the structure. To achieve this aim, 
the optimization problem (21) is solved considering 3 and 41 different values for f and p, 
respectively, with the same increasing steps, where the results are shown in Figure 3. 
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Figure 3. The effect of f and p on the number of removed elements 

 
Figure 3 indicates that the most number of elements (592 elements) are removed when f is 

equal to 0.5 and p is considered as 1.150 or 1.175. It must be noted that when p is selected as 
1.150 or 1.175, the optimization problem (21) is terminated in 19 or 20 iterations, 
respectively, using SIMP. Because of faster convergence in the second case, in this paper, 
these two values (f=0.5 and p=1.175) are selected to solve (21) using SIMP. The number of 
removed elements in the optimization procedure, the convergence history of the objective 
function, and the optimum resulted topology are shown in Figures (4) to (6), respectively.  
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Figure 4. The number of removed elements in each iteration 
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Figure 5. The convergence history of the objective function 

 

  

  
Figure 6. The optimal solution of SIMP: (a) double layer grid, (b) top layer, (c) diagonal layer, 

and (d) bottom layer 
 
In this paper, the optimum topology shown in Figure 6 is used as the ground structure to 

solve (9) which has only deterministic constraints. But in this structure, the removed elements 
are so many that in final optimization steps, despite the increase of the structural stiffness, the 
dynamic criterion (6) is decreased (see Figure 7). 



A TWO-STAGE SIMP-ACO METHOD FOR RELIABILITY-BASED TOPOLOGY... 
 

 

535 

0.33
0.35
0.37
0.39
0.41
0.43
0.45
0.47
0.49

0 2 4 6 8 10 12 14 16 18 20
Itrations

D
yn

am
ic

 C
ri

te
ri

on
 (H

z)

 
Figure 7. The dynamic criterion in each iteration 

 
Therefore, for solving (16) which has frequency constraint, too, the optimum topology 

obtained in the 9th iteration, that is the structure with the most frequency, is used as the ground 
structure from which 408 elements are removed (Figure 8) and is convenient for using instead 
of the previous one (Figure 6). 

 

  

  
         Figure 8. The optimal solution of SIMP: (a) double layer grid, (b) top layer, (c) diagonal 

layer, and (d) bottom layer 



M. Mashayekhi, J. Salajegheh, M.J. Fadaee and E. Salajegheh 

 

536 

 
After solving the optimization problem (21), the number of member types is obtained equal 

to 4 for tensile members and 12 for compressive members (Section 6.5).  
For better comparison of the two obtained topologies shown in Figures 6 and 8, the 

optimum cross-sectional areas are found using ACO and satisfying the constraints (9) and 
(16). The optimum weights are shown in Table 3 where the minimum weights are highlighted. 

 
Table 3. The optimum weights of the two obtained topologies shown in Figures 6 and 8 

Weight (kg) 
Optimization Problem 

Figure 6  Figure 8  Optimum Ground 
Structure (Figure 2) [19]  

Deterministic Topology Optimization 84332 89734 97335 
Reliability-based Topology 

Optimization 134971 119781 125698 
 
The noticeable point is that the optimum weights of SIMP’s topologies, which are obtained 

with a few numbers of structural analyses, are much lower than that of the optimum ground 
structures in [19]. The other point is that when the optimization problem (16) is solved, the 
weight of the structure shown in Figure 6 is more than that of the ground structure in [19]. 
This issue shows that in this structure some necessary elements are removed, too. Therefore, 
in SIMP-ACO method, the shown topologies in Figures 6 and 8 are used to solve the 
optimization problems (9) and (16), respectively.  

The double layer grid shown in Figure 7 is optimized in two cases as follows: 
Case 1: Topology optimization using SIMP-ACO. 
Case 2: Topology optimization using ACO. 
The members are grouped for reduction of the search space. To achieve this aim, a 

preliminary static analysis is first carried out in which all of the members have the same cross-
sectional area. Then, the entire range of axial forces is divided into several equal ranges for 
both the tension and compression members. Each member of the double layer grid is placed 
into different groups according to its quantity of axial force. It must be noted that the number 
of these equal ranges for tension and compression members are determined in Section 6.5.  

To consider the stochastic nature of the ACO and SIMP-ACO approaches, five sample 
optimization runs are performed for each design case and the achieved optimal solutions for 
Cases 1 and 2 are presented. In Figures (9) to (12), (a) is double layer grid, (b) is top layer, (c) 
is diagonal layer, and (d) is bottom layer. Furthermore, in these figures the thickness of each 
element is proportional to its cross-sectional area. 

 
7.1. Deterministic topology optimization 

In Cases 1 and 2 the optimum structures are shown in Figures (9) and (10). The optimum 
weights of these structures are obtained as 79580 kg and 84327 kg, respectively. 
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7.2. Reliability-based topology optimization 

The optimum structures in Cases 1 and 2 are shown in Figures (11) and (12). The optimum 
weights of these structures are obtained as 113398 kg and 117920 kg, respectively. 

 
 

  

  
Figure 9. Optimum topology in Case 1 
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Figure 10. Optimum topology in Case 2 

 

  

  
Figure 11. Optimum topology in Case 1 
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Figure 12. Optimum topology in Case 2 

 
The minimum weights of all cases are listed in Table 4 to be compared with each other. 
 

Table 4. Comparison of the optimum weights of the structures of Cases 1 and 2 

Optimum Weight (kg) 
Optimization Problem 

Case 1 Case 2 The Optimum Topology [19] 
DTO 79580 84327 81927 

RBTO 113398 117920 115581 
 

For a better comparison of ACO and SIMP-ACO, and to achieve the optimum topologies, 
optimum weights of the topologies attained for Cases 1 and 2 are listed in Table 5 for five 
sample runs where the weight of topologies shown in Figures (9) to (12) is highlighted.  

Table 5. Optimum weights of the topologies attained for Cases 1 and 2 for five sample runs 



M. Mashayekhi, J. Salajegheh, M.J. Fadaee and E. Salajegheh 

 

540 

Optimum Weight (kg)  
Sample 5 Sample 4 Sample 3 Sample 2 Sample 1 

Optimization Problem Case 
No.  

80541  80286  80126  80653  79580  DTO 
114010  116324  113398  114933  115802  RBTO 

1  

93772  89213  87403  90270  84327  DTO 
117920  119200  120509  119300  123050  RBTO 

2  

 
The mean )(W  and the standard deviation (SD) of these optimum weights are listed in 

Table 6. 
 

Table 6. The mean and the standard deviation of the optimum weights 

Optimization Problem  Case No. W(kg) SD(kg) 
1 80237 422 

DTO 
2 88997 3493 

1 114893 1214 
RBTO 

2 119996 1938 
 
The statistical values of Table 6 demonstrate that the SIMP-ACO in topology optimization 

of double layer grids performs better than the ACO. 
 
 

8. CONCLUSIONS 
 

In this paper, a two-stage optimization method (SIMP-ACO) has been proposed for RBTO of 
double layer grids that uses ground structure approach. In optimization process of SIMP-
ACO, the weight of the structure is minimized under deterministic and indeterministic 
constraints.  

For implementation of SIMP-ACO, the location of members with high structural 
significance can be first recognized. To achieve this aim, the solution of the topology 
optimization problem was found using SIMP. Then, the outcomes of SIMP (optimum 
topology, optimum cross-sectional areas, and the internal forces of members) were used to 
improve ACO through six modifications. 

In this paper, it is shown that the optimum weights of SIMP’s topologies, which are 
obtained with a few numbers of structural analyses, are much lower than that of the optimum 
ground structures. To use this interesting issue, the SIMP’s obtained topology is used to attain 
a better topology with considering various constraints using a heuristic method (ACO). To 
achieve this aim, a strategy is proposed to control the number of removed elements in SIMP’s 
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optimization process. 
The proposed method was applied for topology optimization of a double layer grid and the 

optimization was implemented in two cases which their results are as follows: (a) SIMP-ACO 
method obtains the optimum topologies with lower weight than those of optimum topologies 
attained by ACO with consideration of various constraints, (b) with respect to the ACO 
method, SIMP-ACO has better solutions and minimum standard deviations. Therefore, SIMP-
ACO approach is more reliable than ACO, and (c) considering the presence or absence of the 
members causes that double layer grids satisfy the mentioned deterministic and reliability 
constraints with better weight than that of the presence or absence of the joints. 
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