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ABSTRACT 
This study aims to deal with multi-material topology optimization problems by using the 

Methods of Moving Asymptotes (MMA) method. The optimization problem is to minimize 

the strain energy while a certain amount of material is used. Several types of structures, 

including plane, plate and shell structures, are considered and optimal materials distribution 

is investigated. To parametrize the topology optimization problem, the Solid Isotropic 

Material with Penalization (SIMP) method is utilized. Analytical sensitivity analysis is 

performed to obtain the derivatives of the objective function and volume constraints with 

respect to the design variables. Two types of material with different modulus of elasticities are 

considered and, therefore, each element has two design variables. The first design variable 

represents the presence or absence of material in an element, while the second design variable 

determines the type of material assigned to the element. In order to analyze the structures 

required during the optimization process, the ABAQUS software is employed. To integrate 

the topology optimization procedure with ABAQUS model, a Python script is developed. The 

obtained results demonstrate the performance of the proposed method in generating 

reasonable and effective topologies. 
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1. INTRODUCTION 
 

Optimization refers to determining the best possible outcome or result for a system while 

simultaneously satisfying certain constraints and limitations. Structural engineering design 
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can be divided into three main stages. In the first stage, the structural form and layout are 

determined based on the design space. The second stage involves defining the shape of the 

structure and the geometric characteristics of its boundaries. The third stage pertains to the 

detailed design of structural elements. This categorization has, respectively, led to the 

development of three corresponding structural optimization methods: topology optimization, 

shape optimization, and size optimization. 

In 1988, Bendsøe and Kikuchi [1] introduced the concept of topology optimization by 

using the homogenization method, however, the foundation of this method goes back to the 

minimum weight structures that developed by Michell [2] in 1904. Bendsøe [3] proposed the 

use of penalization for isotropic materials for the first time in 1989. By 1992, Rozvany and 

colleagues [4] developed the Solid Isotropic Material with Penalization (SIMP) method, 

incorporating penalized intermediate design variables to achieve a black-and-white model. 

Over the years, various topology optimization (TO) methods have been developed, including 

the optimality criteria methods [5-7], Evolutionary Structural Optimization (ESO) [8, 9], 

Bidirectional Evolutionary Structural Optimization (BESO) [10], the Level-Set Methods 

(LSM) [11-17] and several metaheuristic approaches such as the ant colony method, etc. for 

continuum and skeleton structures [18-27]. In this study, the Method of Moving Asymptotes 

(MMA), which has been proven to be among the most effective methods for solving topology 

optimization problems, is utilized as the optimization engine. This method was introduced by 

Svanberg in 1987 [28] and has vastly been used in structural optimization [29-33]. 

Multi-material topology optimization primarily aims to achieve optimal  performance 

through the efficient distribution of different materials [34] or realize purposes that may be 

difficult to be attained by single-material structures [35]. Zuo and Saitou [36] proposed a 

multi-material interpolation scheme based on the Solid Isotropic Material with Penalization 

(SIMP) method to solve multi-material topology optimization problems using the Optimality 

Criteria (OC) algorithm. Su Yun and Kie Youn [37] developed a multi-material topology 

optimization approach with the objective of maximizing dissipated energy, aiming to design 

viscoelastic and structural systems that exhibit both high damping and desirable stiffness. In 

light of recent advancements in 3D printing technology, Li et al. [38] proposed a novel multi-

material topology optimization approach for designing 3D-printable concrete structures. 

Zhang et al. [39], noting that most studies on multi-material topology optimization have 

focused on continuous structures under linear material behavior, conducted a study on 

topology optimization of truss structures by considering nonlinear material behavior. Li and 

Kim [40] addressed the multi-material optimization problem by introducing a method based 

on element-wise density to minimize strain energy while satisfying volume constraints. 

Chandrasekhar and Suresh [41] solved the multi-material topology optimization problem 

through the implementation of neural networks. Feng and Yamada [42], pointing out that 

existing research often assumes multi-material structures are assembled using welding or 

adhesives which do not support disassembly and are unsuitable for manufacturing, thus 

proposed an innovative approach for generating interlocking connections in multi-material 

topology optimization, enabling easy assembly and disassembly. Jeong et al. [43] introduced 

a novel method for multi-material topology optimization based on Physics-Informed Neural 

Networks (PINNs), capable of solving complex and nonlinear problems. Duan et al. [44] 

proposed a multi-material topology optimization approach for structural design decision-

making, which identifies optimal topologies that enhance load-bearing capacity and reduce 



MULTI-MATERIAL TOPOLOGY OPTIMIZATION OF STRUCTURES BY … 299 

costs by considering both strain energy and material expenses. Yang et al. [45] presents a 

multi-material topology optimization method for designing additive  manufactured thin-walled 

structures with optimized lattice and stiffener layouts. Numerical and experimental results 

demonstrate that the proposed approach significantly improves structural performance 

compared to conventional designs. Zhao in reference [46] presented a multi-material topology 

optimization method for identifying strut and tie model in deep reinforced concrete beams. Li 

et al. [47] proposed a multi-material topology optimization strategy tailored for the 

architectural design of structures. Chu et al. [48] introduced a two-stage filtering approach to 

characterize multi-material structures for topology optimization. Banh and Lee [49] developed 

a multi-material topology optimization method for continuous structures based on crack 

pattern evolution, aiming to generate optimal topologies and material distributions to prevent 

crack propagation. Jahangiri et al. [50] investigated the multi-material topology optimization 

of steel shear walls using the level set method, taking into account the effects of stiffeners and 

architectural openings. It was observed that multi-material shear walls reduced the strain 

energy thereby decreasing lateral displacements. Zhengtong et al. [51] applied an enhanced 

version of the Particle Swarm Optimization (PSO) algorithm to the multi-material topology 

optimization problem. Kaveh et al. [52] applied an improved firefly algorithm to optimize the 

topology and connectivity of multi-material truss structures. One of the recently developed 

meta-heuristic algorithms is the Black Hole Mechanics Optimization (BHMO) algorithm. 

Salmanpour et al. [53] conducted a study on multi-material size optimization of transmission 

tower trusses using the Black Hole Mechanics Optimization (BHMO) algorithm. 

Topology optimization has demonstrated its capability in generating optimal designs across 

various fields of engineering. However, the widespread application of many modern methods 

in academic and industrial settings has been limited due to implementation challenges within 

commercial software environments. In this study, the topology optimization problem is 

implemented using the Python programming language, while structural analysis throughout 

the optimization process is carried out using the finite element software, ABAQUS. 

 

 

2. PARAMETERIZATION OF THE OPTIMIZATION PROBLEM 
 

Based on the Solid Isotropic Material with Penalization (SIMP) method, the interpolation 

function for the multi-material modulus of elasticity can be expressed as [40]: 
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where 
1,( )M

ijklE   is the index representation of the interpolated elasticity tensor, 
,m M

ijklE  is 

the recursive representation associated with m  base materials, and P  is the penalization 

factor generally assumed to be equal to 3 in the numerical simulation. 

In this paper, the material interpolation function for a two-material interpolation is written 

as follows:  
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where ijklE  denotes the elasticity tensor of each finite element. 
1  is the first design 

variable indicating the presence or absence of material in an element, and 
2  is the second 

design variable that determines the type of material assigned to the element. Here 
1 2,ijkl ijklE E  

denote the elasticity tensors of the first and second materials, respectively. In the examples of 

this study, the first material is assumed to be the stiffer one. Accordingly, two design variables 

are necessary to represent the three-phase material model, two solid and one void materials. 

In general, the extension of the SIMP approach to an m-phase material model demands ( 1)m −  

design variables per finite element. 

 

 

3. METHOD OF MOVING ASYMPTOTES 
 

The MMA is a gradient based nonlinear programming algorithm that is widely applied to 

structural optimization problems. This method employs an iterative scheme, wherein each step 

constructs a series of strictly convex approximating subproblems. At each iteration point, 

subproblems are solved using the dual method, and their solutions are utilized as the next 

iteration point. This iterative process continues until convergence is achieved.  In this method, 

the approximation function for each 0,...,j m=  around the iteration point 
( )kx , where x  is 

the vector of design variables with n  components and k  is iteration counter is defined as 

follows [28]: 

 

( ) ( )

( ) ( )

( ) ( )
1

( )

k kn
ji jik k

j j k k
i i i i i

p q
g x r

U x x L=

 
 + +  − − 

  (3) 

The values of 
( )k

jr , 
( )k

jip and 
k

jiq  are selected as follows: 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )
1

( ) ( ) ( ) 2

( )

( )

( ) ( ) ( ) 2

( )

( ) 0

0 0

0 0

( ) 0

k kn
ji jik k

j j k k k k
i i i i i

j jk k k

ji i i

i i

jk

ji

i

jk

ji

i

j jk k k

ji i i

i i

p q
r g x

U x x L

g g
p U x if

x x

g
p if

x

g
q if

x

g g
q x L if

x x

=

 
= − +  − − 

 
= −  

 


= 




= 



 
= − −  

 



 (4) 



MULTI-MATERIAL TOPOLOGY OPTIMIZATION OF STRUCTURES BY … 301 

The positive values 
( )k

iL and 
( )k

iU  serve as bounding limits within which the approximation 

function is capable of generating reasonable solutions for the optimization problem. The 

values of these parameters, which are considered vertical asymptotes for the approximation 

function, must be updated in each iteration. 

To solve the approximate subproblem using the dual method, the Lagrangian function must 

first be constructed and then minimized with respect to the design variables. By substituting 

the obtained minimum value into the Lagrangian function, which also depends on the 

Lagrange multipliers, this function must then be maximized with respect to the Lagrange 

multipliers. The value obtained in the final step represents the optimal point of the approximate 

subproblem [28]. To obtain the approximate formulation of the optimization problem, it is 

necessary to compute the derivatives of the objective and constraint functions with respect to 

the design variables as input data. 

 

 

4. FORMULATION OF THE TOPOLOGY OPTIMIZATION PROBLEM 

CONSIDERING TWO MATERIALS 
 

The topology optimization problem for minimizing strain energy is expressed as follows: 
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where C  denotes the strain energy, which serves as the objective function; 
1 is the first 

design variable indicating the presence or absence of material in each finite element; and 
2  

is the second design variable specifying the type of material assigned to each element. The 

topology optimization problem is subject to two volume constraints: maxtotalV − , which 

represents the total allowable volume of both materials combined, and 1 maxV − , which limits 

the volume of the first material. Additionally, iv  denotes the volume of the i-th element. K  is 

the global stiffness matrix, U  is the nodal displacement vector, F  is the external force vector, 

and N  is the number of elements within the design domain. 
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5. SENSITIVITY ANALYSIS 
 

In optimization problems, this concept refers to assessing the sensitivity of the objective 

function with respect to each design variable, which essentially involves computing the 

derivative of the objective function with respect to that variable. In general, sensitivity analysis 

methods can be categorized into three main types: numerical, semi-analytical, and analytical 

approaches. In numerical methods, the derivatives of the objective and constraint functions 

are obtained using various numerical techniques, such as finite difference schemes. Semi-

analytical methods involve a combination of analytical and numerical procedures to compute 

the required derivatives. In analytical methods, which are employed in this study,  the 

derivatives are explicitly derived with respect to the design variables of the problem. 

In structural topology optimization problems, the number of finite elements and 

consequently the number of design variables is typically very large. Therefore, the use of the 

adjoint variable method for sensitivity analysis, particularly through the computation of the 

adjoint variable  , is highly suitable and computationally efficient. Sensitivity analysis using 

the adjoint method, in conjunction with the Solid Isotropic Material with Penalization (SIMP) 

approach, is defined by the following expression: 
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where F  denotes the external force vector, K  is the global stiffness matrix, U  is the nodal 

displacement vector, and N  represents the number of elements. 

Similarly, the derivative of the objective function with respect to the first design variable 

is computed as follows [9]: 
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where ik  represents the stiffness matrix of the i-th element, 
1

ik  is the element stiffness 

matrix computed using the elastic modulus of the first material, and 
2

ik  is the element stiffness 

matrix computed using the elastic modulus of the second material. The strain energy of the i-

th element is obtained from the following relation: 
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To compute the derivative of the objective function with respect to the second design 

variable, the following expression can be formulated: 
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In linear topology optimization, the term 
1 2( )P T

i i i iu k u  is defined as the pseudo strain 

energy [40], that can be written as follows: 
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Finally, the derivative of the objective function with respect to the second design variable 

is defined by the following relation: 
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6. OPTIMIZATION FRAMEWORK 
 

The two-material topology optimization process can be explained by the flowchart depicted 

in Figure 1, which shows steps outlined as follows: 

 

1. First step is the definition of design domain to be optimized. 

2. The design domain is discretized into square quadratic finite element, at the end of this 

step, the ABAQUS model is prepared. 

3. Execute a linear static finite element analysis of the structure. 

4. Determine the strain energy of each element. 

5. In this step an analytical sensitivity analysis is implemented based on Equations (7) and 

(11). 

6. The Method of Moving Asymptotes (MMA) is employed to iteratively update the design 

variables. 
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7. The iterative procedure is repeated for the updates of the design variables until the 

minimization algorithm reaches convergence. Convergence is achieved when the 

objective function has not changed more than 0.1% over the last 10 iterations. 

 

  
Figure 1: Flowchart of the proposed multi-material topology optimization 

 

 

7. NUMERICAL EXAMPLES 
 

7.1. Example 1  

In this example, a fixed-end beam, as shown in Figure 2, is considered. The external force 

F in Figure 2 is equal to 5000 kgf in all cases. The design domain is discretized by 80×20 

quadratic finite element. Topology optimization of two materials is investigated in which 

modulus of elasticities for material 1 and material 2 are 2×106 kg/cm2 and 2×104 kg/cm2, 

respectively. In order to investigate the effect of material volume fraction on the distribution 

of materials and performance of optimized structures, the problem is solved in four states with 

different volume fraction where the maximum total allowable volume of both materials are 

the same. The four volume fractions listed in Table 1. 
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The layout comparison of the four optimum solution for two-material topology 

optimization are shown in Figure 3. As evidenced by the results, Material 1 that consider as 

the stiffer material is allocated to regions of heightened stress concentration, such as near 

support boundaries and load application points. Conversely, the more compliant material is 

deployed in low stress zones. The convergence history of objective function and volume 

fractions of the solved problems is illustrated in Figure 4. As per Figure 4 it can be observed 

that as the amount of the stiffer material increases, the strain energy of the structure decreases, 

leading to an overall increase in stiffness. 

 

 
Table 1. Volume fraction constraints for the fixed-end problem 

Case no. 

Total material 

total-max

designspace

( )%
V

V
 

Material 1 

1

designspace

( )%
V

V
 

Material 2 

total-max 1

designspace

( )%
V V

V

−
 

1 50 10 40 

2 50 20 30 

3 50 30 20 

4 50 40 10 

 

  
Distribution of material 1 Distribution of material 1 

  
Distribution of material 2 Distribution of material 2 

  
Distribution of both materials Distribution of both materials 

(a) (b) 

 
Figure 2: Geometry and boundary conditions 
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Distribution of material 1 Distribution of material 1 

  
Distribution of material 2 Distribution of material 2 

  
Distribution of both materials Distribution of both material 

(c) (d) 

Figure 3: Optimum topology results of the end fixed beam. (a) Case 1; (b) Case 2; (c) Case 3; (d) 

Case 4 
 

  

(a) (b) 

 

 

(c) (d) 

Figure 4: History of objective function and volume of end fixed beam. (a) Case 1; (b) Case 2; 

(c) Case 3; (d) Case 4 
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7.2. Example 2 

A simple seated beam is studied in this example as depict in Figure 5. The design domain 

is meshed by 80×20 quadratic finite elements. The external force F in Figure 5 is equal to 

5000 kgf in all cases. In order to investigate the effect of modulus of elasticities of material 2 

on the distribution of materials and performance of optimized structures, the problem is solved 

in three states with different modulus of elasticities for material 2 which are shown in table 2. 

Maximum allowable volume of material 1 and maximum total allowable materials volume, 

are the same in these three states. The topology comparison of the three optimum solution for 

two-material topology optimization and convergence history of objective function and volume 

fractions are shown in Figures 6 and 7, respectively. As evidenced by the results, the 

distribution of materials 1 and 2 and the overall topology are independent of the value of the 

elastic modulus of the materials. 

 

 
Figure 5. Geometry and boundary conditions. 

 
Table 2: Volume fractions and modulus of elasticities of material 2. 

Case no. 

Total material 

total-max

designspace

( )%
V

V
 

Material 1 

1

designspace

( )%
V

V
 

Material 2 

total-max 1

designspace

( )%
V V

V

−
 

Modulus of 

elasticities 

𝑘𝑔/𝑐𝑚2 

1 

50 30 20 

𝐸2 = 2 × 102 

2 𝐸2 = 2 × 103 

3 𝐸2 = 2 × 104 

 

  
Distribution of material 1 Distribution of material 1 

  
Distribution of material 2 Distribution of material 2 
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Distribution of both materials Distribution of both materials 

(a) (b) 

 
Distribution of material 1 

 
Distribution of material 2 

 
Distribution of both materials 

(c) 

Figure 6: Optimum topology results of simple seated beam. (a) Case 1; (b) Case 2; (c) Case 3 

 

7.3. Example 3 

This example considers a plate structure with simply supported boundary condition at all 

four corners as depicted in Figure 8. This example is solved with two different mesh 

discretizations: in the first case, the design domain consists of 1000 quadratic finite element, 

and in the second case, it is discretized into 4000 quadratic finite element. The external force 

F in Figure 8 is equal to 1000 kgf in two cases. Topology optimization of two materials are 

investigated in which modulus of elasticities for material 1 and material 2 are 2×106 kg/cm2 

and 2×104 kg/cm2, respectively. The volume fraction that used in this example is listed in table 

3, and the topology comparison of the two optimum solution for two-material topology 

optimization and convergence history of objective function and volume fractions are shown 

in Figures 9 and 10, respectively. The results show that stiffer material is placed where the 

stress is higher. There is also a slight effect from the mesh, which is common in topology 

optimization problems. 
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(a) (b) 

 
(c) 

Figure 7: History of objective function and volume fraction of simple seated beam. (a) Case 1; 

(b) Case 2; (c) Case 3 

 

 
Figure 8: Geometry and boundary conditions 
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Table 3: Volume fraction constraints for plate structure 

Case 

no. 

Design 

domain 

elements 

Total material 

total-max

designspace

( )%
V

V
 

Material 1 

1

designspace

( )%
V

V
 

Material 2 

total-max 1

designspace

( )%
V V

V

−
 

1 20 × 50 
50 20 30 

2 40 × 100 

 

  

Distribution of material 1 Distribution of material 1 

  

Distribution of material 2 Distribution of material 2 

  

Distribution of both materials Distribution of both materials 

(a) (b) 

Figure 9: Optimum topology results of plate structures. (a) Case 1; (b) Case 2 
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(a) (b) 

Figure 10: History of objective function and volume fraction of plate structure. (a) Case 1; 

(b) Case 2 

7.4. Example 4 

Topology optimization of a shell structure is considered as the final example of this article. 

This example considers a shell structure with simply supported boundary condition at all four 

corners as depicted in Figure 11. The design domain is discretized by 50×53 quadratic finite 

elements. The external force F in Figure 11 is assumed to be 1000 kgf. Topology optimization 

of two materials are investigated in which modulus of elasticities for material 1 and material 

2 are 2×106 kg/cm2 and 2×104 kg/cm2, respectively. The volume fraction that used in this 

example is listed in Table 4. The topology of the optimum solution and convergence history 

of the objective function and volume fractions are shown in Figures 12 and 13, respectively. 

The stiffer material forms the core of the structure, connecting the point load to the supports 

in the high-stress regions, while the more compliant material is distributed around this core. 

 
Figure 11. Geometry and boundary conditions 
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Table 4: Volume fraction constraint for the shell structure 

Case no. 

Total material 

total-max

designspace

( )%
V

V
 

Material 1 

1

designspace

( )%
V

V
 

Material 2 

total-max 1

designspace

( )%
V V

V

−
 

1 50 20 30 

 

 
Distribution of material 1 

 
Distribution of material 2 

 
Distribution of both materials 

Figure 12: Optimum topology results for the shell structure 
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Figure 13: History of objective function and volume fraction of shell structure 

 

 

8. CONCLUSION 
 

In this study, multi-material topology optimization for plane, plate and shell structures is 

investigated. For a two-material problem, the proposed approach uses two design variables 

per element and applies two volume constraints to regulate the material distribution. 

Sensitivity analysis is performed using an analytical method to evaluate the effect of design 

variables on the objective function and constraints. The Solid Isotropic Material with 

Penalization (SIMP) method is adopted for parameterization, and the Method of Moving 

Asymptotes (MMA) is utilized to solve the topology optimization problem. The numerical 

results demonstrate that the proposed method can effectively determine the optimal 

distribution of two materials within the specified design domain with satisfactory precision. 
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