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ABSTRACT 
 

In this paper nonlinear analysis of structures are performed considering material and 
geometric nonlinearity using force method and energy concepts. For this purpose, the 
complementary energy of the structure is minimized using ant colony algorithms. Considering 
the energy term next to the weight of the structure, optimal design of structures is performed. 
The first part of this paper contains the formulation of the complementary energy of truss and 
frame structures for the purpose of linear analysis. In the second part material and geometric 
nonlinearity of structure is considered using Ramberg-Osgood relationships. In the last part 
optimal simultaneous analysis and design of structure is studied. In each part, the efficiency of 
the methods is illustrated by means simple examples. 
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1. INTRODUCTION 
 

Problems in structural mechanics have, for a long time, been solved using linear or linearized 
equations representing their behavior. The solutions obtained based on these linear models 
were considered adequate for many practical and engineering purposes although it was 
recognized that linearized equations provide no more than a first approximation to the actual 
situations. It is often recognized that there is an increasing demand for more realistic models to 
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predict the responses of actual structures. Such demands combined with the availability of 
superior computational facilities have enabled the researchers to abandon the linear theories in 
favor of nonlinear methods of solution. 

Nonlinearities in structures can arise in many different ways. The generalized Hook’s low 
is not valid if the material stress-strain behavior is nonlinear. This type of nonlinearity is 
generally known as material or physical nonlinearity. Alternatively, a different type of 
nonlinearity based on the deformations of an elastic body is possible in many instances. 
Problems involving deformations that are large are called geometrically nonlinear problems. 
Here minimization of the complementary energy transforms material nonlinearity to nonlinear 
system of equations, which can be solved using the Newton or Modified Newton–Raphson 
methods. One can alternatively use differential concepts for the solution of such problems. 
This will then lead to a system of ordinary nonlinear differential equations. These equations 
become more involved when geometric nonlinearity is also included. In such a case one has to 
use iterative methods. In this paper, an ant colony algorithm used to avoid the formation of the 
nonlinear equations. The energy concepts are important tools for the solution of nonlinear 
problems which are presented in subsequent sections. Recent formulations which are different 
from the existing approaches (see Refs. [1,2]) lead to better results and allows the analysis and 
design to be performed simultaneously more efficiently. Another important application of this 
formulation is to reach a specified level of stress ratio for the elements of the structures. It will 
be seen that for optimal design considering the weight term next to the energy term, the search 
in the ant colony algorithm can be directed to achieve the least possible weight for the 
structures. 

In the first part of this paper some new goal functions for the purpose of minimization of 
the complementary energy of the structure is introduced for linear analysis. In the second part 
material nonlinearity is studied using Ramberg-Osgood formulas. Third part contains the 
algorithms for geometric nonlinear analysis. In the last part simultaneous optimal design of 
structure is presented. 

In this study a continuous ant colony optimization (CACO) algorithm is used based on the 
algorithm introduced in Ref. [3] for the purpose of minimization of the complementary energy 
function. For more information on discrete and continuous ant colony algorithms one can refer 
to Refs. [4-7]. 

Examples from literature are studied in order to illustrate the capability of the present 
approaches. 

 
 

2. LINEAR ANALYSIS BY FORCE METHOD AND ANT COLONY 
ALGORITHM 

 
In this section, a matrix formulation using the basic tools for structural analysis - equilibrium, 
compatibility and load-displacement relationships - is described. For the nonlinear material the 
stress-strain relationship can be expressed as ε = f (σ) or σ = g (ε). Then the strain energy and 
complementary energy can be written as 

 
 ∫∫ εε= Vg dd)(U   and  ∫∫ σσ= Vf dd)(cU  (1) 
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U is the strain energy and Uc is the complementary energy of the structure and are shown 
in Figure 1 in linear and nonlinear materials. For truss structures substituting V = AL, one of 
the integrals will be omitted. The total potential energy can be expressed as 

 
 V = U − Ptu (2) 

 
where P is the vector of external loads and u is the vector of joint displacements. Considering 
the Castigliano’s theorem for a linear or materially nonlinear structure, the total potential 
energy become stationary for equilibrium state. Similarly, from the second theorem of 
Castigliano, the complementary energy becomes stationary for compatible state of internal 
forces. 
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               (a) A general relationship                                     (b) A linear relationship 

Figure 1. Force-displacement relationship 
 
The main aim is to formulate the energy function of a structure and minimize this function 

using the ant colony algorithm, while satisfying all stated compatibility conditions. The 
formulation is based on the minimum complementary work principle. 

Suppose {p}={p1, p2, . . . , pn}t is the vector of nodal forces, {q}={q1, q2, . . . , qr}t 
contains r redundant forces, and {r}={r1, r2, . . . , rm}t comprises of the internal forces of the 
members. Here, n is the number of nodal forces, r is the number of redundant forces and m is 
the number of internal forces. From equilibrium 
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In general, [B0] and [B1] can be specified by using equilibrium equations, therefore 

Equation (3) represents the equilibrium in the solution. [B0] and [B1] are rectangular matrices 
each having m rows with n and r columns. For example, if pi=1 and all other nodal and 
redundant forces are equal to zero, internal forces of members are the entries of the i-th 
column of [B0]. Also if r i =1 and all other forces are equal to zero, internal forces of members 
are the entries of the i-th column of [B1].  

In Equation (3), B0P is known as a particular solution, which satisfies equilibrium with the 
imposed loads, and B1q is a complimentary solution, formed from a maximal set of 
independent self-equilibriums stress systems. 

From classical complementary energy concepts 
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where [Fm] is the unassembled flexibility matrix of the structure. Substituting {r} from 
Equation (3) in Equation (4) leads to 
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Decomposing the matrix [H] into four submatrices [Hqq], [Hqp], [Hpq], and [Hpp], we 

obtain Uc as 
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In the classical method, for the purpose of satisfying the compatibility condition, the 

derivative of Uc with respect to {q} is found and equated to zero, leading to 
 

 }]{[][}{ qp
1

qq pHHq −−=  (7) 
                  
Since [H] is symmetric, therefore [Hqp]t =[Hpq]. 
In the present approach, finding the inverse of [Hqq] is not required. Instead, Uc from 

Equation (5a) is minimized by ant colony algorithm. 
Here, we suggest a goal function as  
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Or 
 }]{[}{}}{{}{}]{[}{ qq

t
qp

t
pq

t qHqpHqqHp ++=UF  (9) 
 

for the purpose of finding redundant forces ([q]). Instead of Equations (8) and (9) and 
considering Equation (7), a goal function can be introduced as 

 
 })]{[}}{({norm qqqp qHpH +=UF  (10) 

 
In Equations (8-10), {p}, [H] and its submatrices are constant; therefore the ant colony 

algorithm will find the best results for {q} by minimizing the complementary energy function. 
Then the internal forces of the structure can be found using Equation (3). 
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Also we can use the general complementary energy function (Equation (4)) as the goal 
function of minimization. In this case, there is no need to calculate the [H] and its submatrices. 
In order to minimize FU, a continuous ant colony algorithm is employed. Evaporation is also 
added to the algorithm, introduced in Ref. [3], for improving the results. 

Here we consider two examples, studied previously in Reference [1], using genetic 
algorithm. 

 
2.1. Example 1 

Consider the portal frame with constant EI for all the members as shown in Figure 2. The 
basic structure is constructed by imaginary cut at support node 5. The necessary matrices are 
as follows: 
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(a)                                      (b) 

Figure 2. A portal frame: (a) A portal frame and its loading; and (b) The selected basic structure 
 
EI in the formation of [F] is taken as constant for all the members. Therefore it can be 

omitted from the calculation. Equation (8) is considered as the goal function. The variation of 
FU versus the number of iterations is illustrated in Figure 3. Here, {q} is calculated as {q} = 
{12.9232, 8.7035,−21.7221}t kN and from exact calculation{q} = {13.00, 8.75, −21.75}t kN 
is obtained. For the analysis of this structure the number of iterations is taken as 40 and each 
iterations consists of 35 ants.  
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Figure 3. Variation of FU versus the number of iterations. 

 
2.2. Example 2  

Consider the 10-member frame with constant EI and EA as shown in Figure 4. Diagonal 
members treated as frame members and have no connection with each other in the 
intersection. The selected basic structure is illustrated in Figure 5. In this case considering 
flexural and axial complementary energy is necessary for precise results therefore the total 
complementary energy of the structure  is obtained from the summation of flexural and axial 
energy (the moment of inertia I is related to area A by I=75A). The exact FU is calculated as 
FU =3.86080×106 and from ant colony algorithm FU =3.86095×106 is obtained. For this 
case, {q} = {15.6, −38.1, −596.0, −36.0, −73.0, 1250.7, −61.4, 169.8, −238.0, −73.5, −669.8, 
550.9, −72.3, 798.9, 90.3}t kN and from exact calculation {q} = {15.8, −38.4, −590.8, −36.2, 
−69.1, 1245.7, −61.7, 175.1, −274.5, −72.8, −677.6, 574.1, −71.9, 794.2, 112.8} t kN is 
calculated. 
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Figure 4. A 10-member frame with 15 degrees of static indeterminacy 
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Figure 5. The selected basic structure for 10-member frame 

 
 

3. MATERIAL NONLINEAR ANALYSIS USING ANT COLONY ALGORITHM 
 

In this section, the material nonlinear analysis of structures is performed using the force 
method and ant colony algorithm. The main deference between linear and material nonlinear 
formulation of the complementary energy is due to different properties of the flexibility matrix. 
For materials with linear behavior, the flexibility matrix F is independent of redundant forces 
q, but for nonlinear materials it is dependent. Therefore, the existing linear stress-strain 
relationships can not be used in the nonlinear analysis of structure. Various functions are 
suggested for stress-strain relationship and one of the most well-known functions is the 
Ramberg-Osgood formula expressed as 
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where E is the elastic modulus, σ0 is the magnitude of stress at the point with tangential 
modulus equal to 0.7E. The parameter ‘‘n’’ measures the steepness of the strain hardening 
part of the ε–σ diagram (known as the strain hardening index). Increasing n, the function gets 
closer to that of an elastic-plastic model. 

Ant colony goal function is similar to the functions introduced for the linear analysis 
considering a different flexibility matrix in the material nonlinearity. 

Force method and complementary energy concepts can be used indirectly for the material 
nonlinear analysis of structures, where a different new goal function for minimization using 
ant colony algorithm is introduced. In any type of structures, for the i-th member ei =  F ir  i or 
e= F r, where e is the deformation and r is the internal force. Uc for the i-th member is 
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 ∫= ii re dtcU  (12) 
For a structure with m members  
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For satisfying the compatibility condition, from classical force method  
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This method also results in q. It can be seen that in this case we have a nonlinear equation; 

and for a general structure a set of nonlinear equations will be obtained. For solution one can 
use Newton’s iterative method. The rate of convergence and uniqueness of the solution and 
the stability of convergence are the main issues. There are other methods available with their 
own difficulties. In order to overcome these difficulties, in this paper AC is employed turning 
B1

tFr into zero. Redundant forces q in the formation of [F], are considered as unknowns of 
the ant colony algorithm and then member forces are calculated using Equation (3). From 
Equation (16) it can easily be shown that instead of B1

tFr, one can turn B1
tF into zero for the 

purpose of finding redundant forces. Since this value is a vector and the result is exact when 
all its entries become zero; therefore, one can try to make the following to zero: 
 )norm( t

1 FB=G  (17) 
 
In Ref. [1], G was introduced as G = (B1

tF) t (B1
tF) = F B1B1

tF. This value is a matrix with 
m rows and m columns, where m is the number of the members of structure and can not be 
turned into zero in some cases. However, Equation (17) leads to better results than other 
functions. 

Here we consider two nonlinear examples with different stress-strain relationships. AC 
results are compared to those of genetic algorithm and it is shown that AC performs better in 
the nonlinear analysis of structures. 

 
3.1. Example 1 

A truss is considered as shown in Figure 6 with the stress-strain relationship as σ3=7ε/A3.  

This truss has one degree of static indeterminacy; therefore the minimization goal function 
has only one unknown. With this redundant force, other member forces, r, are obtained from 
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equilibrium (Equation (3)). Dividing these forces by the corresponding cross-sectional areas, 
result in the stresses. The stress-strain relationship leads to the strains, when multiplied by the 
member lengths, provides the elongation of the members, e. Having the relation between e and 
r for i-th member, one can formulate F as  

 

 [ ]
7

Lr2
=iF  (18) 

 
Employing [B0], [B1] and [F], the goal function for the minimization can be formulated 

(Equations (8-10) and (17)). AC leads to {r} = {10.000, 10.000, 20.893, −20.000, −14.100, 
−9.459, −21.407}t kN where GA leads to {r} = {10.002, 10.002, 20.682, −19.982, −14.105, 
−9.387, −21.691}t kN (Ref. [1]). 
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(a)                         (b) 

Figure 6. A truss with a single degree of static indeterminacy: (a) A truss; and (b) The selected 
basic structure 

 
3.2. Example 2 

The truss shown in Figure 7 is analyzed using the ant colony algorithm, where the material 
obeys the Ramberg-Osgood material. Table 1 shows the data needed for Ramberg-Osgood 
material. This relationship is expressed as 
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This structure is twice statically indeterminate, and the redundant forces are selected as the 

internal forces of members 2 and 7. [B0] and [B1] can be written as 
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Substituting the two unknowns, [B0] and [B1] in Equation (3), all the member forces are 

calculated and substituted in Equation (19) to obtain the flexibility matrix. AC performs well 
and leads in {r} = {11.250, 6.250, −6.250, −11.250, 0.007, 3.756, 6.240, −6.260, −3.744, 
5.008}t K by turning the Equation (17) into zero selecting 20 ants and in 20 iterations where 
{r} = {11.250, 6.250, −6.250, −11.250, −0.045, 3.716, 6.306, −6.194, −3.784, 4.955}t K 
obtained from  GA (Ref. [1]). 
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Figure 7. A planner truss with two degrees of static indeterminacy: (a) A truss; and (b) The 
selected basic structure 

 
Table 1. Parameters corresponding to Ramberg-Osgood 

Members L: in. (cm) A: in2 (cm2) σ0: ksi (MPa) n 

1,4,6,9 30 (76.2) 0.25 (1.6129) 10.13 (69.7957) 7 

2,3,7,8 50 (127) 0.20 (1.2903) 8.10 (55.8090) 7 

5,10 40 (101.6) 0.20 (1.2903) 8.10 (55.8090) 7 
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4. GEOMETRIC NONLINEAR ANALYSIS USING ANT COLONY 
ALGORITHM 

 
In this section, the geometric nonlinearity is added to the material nonlinearity. Geometric 
nonlinear effects need to be simulated when stiffness properties or loads change significantly 
as the result of deformation. Rigorous analysis of geometrically nonlinear structures demands 
creating mathematical models that accurately include loading and support conditions and, 
more importantly, model the stiffness (or flexibility) and response of the structure. Analysis of 
snap-through buckling is an example in which geometric nonlinearity effects are important. In 
this paper, we employ the ant colony algorithm instead of solving complicated mathematical 
models. 

In geometric nonlinearity, problem involves variable displacements in each step, therefore 
considering the redundant forces as the unknowns is not sufficient since the displacements are 
independent of the unknown forces and are also dependent on the forces of the other 
members. Thus in each step, B0 and B1 matrices will be functions of displacements and are 
not unchanged as in the previous cases. Therefore, apart from redundant forces, the nodal 
displacements of the structure should also be considered as the unknown parameters of the ant 
colony algorithm. 

One can use complementary energy function as the goal function of AC to perform 
geometric nonlinear analysis. In this iterative method, B0 and B1 can be calculated in each 
step, and operations similar to the previous algorithm should be repeated. 

It will be beneficial if only nodal displacements are used as unknowns and the redundant 
forces are eliminated. When the system is in equilibrium, the total potential energy (V) of the 
structure is minimum; therefore we use V in place of Uc in AC algorithm. This process 
consists of the following steps: 

 
Step 1: Selecting each u (nodal displacements vector), the elongations of the elements are 

obtained as d=Etu. In this equation E is the compatibility matrix and its transpose is the 
equilibrium matrix as E=Bt. It should be noted that E is a function of u and it is calculable in 
terms of u. Alternatively, in truss structures one can use the following simple relations to 
calculate the elongations of an element. 
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Where ui,j and v i,j  are the nodal displacements in the X and Y directions. 

Step 2: Calculate ε =d/L (∆L/L) and then obtain the σ = g(ε). Here g can be linear or 
nonlinear. 
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Step 3: To satisfy the equilibrium condition, minimize the potential energy of the structure 
by the ant colony algorithm that can be written as 

 

 ∫ ∑−ε=
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where V is the potential energy , V is the volume of the body and  
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For a truss structure, Equation (21) can be modified as  
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4.1. Example 1  

Consider the truss shown in Figure 8 from Refs. [1, 8]. In this truss, the cross-sectional areas 
for the members 2-4 are 100 mm2 and the remaining members are 200mm2. This example is 
studied with linear and nonlinear material considering the geometric nonlinearity. For linear 
case, E= 5102× MPa and for the nonlinear material, stress-strain curve is represented as  
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where σ is measured in MPa. 

The results are given in Table 2 and compared. Though this method is quite straight 
forward, however, it is only suitable for structures with low kinematic indeterminacy, since the 
unknown corresponding to the degrees of freedom (DOFs) are the parameters of AC. In the 
previous example, the horizontal and vertical displacements (u and v) of the nodes 4 and 5 
(only four variables) were selected as the unknowns of the goal function. 

In what follows, a method is presented which can be considered as a combination of the 
force method and the displacement approach. In this method, the unknowns of the AC are the 
redundant forces; however, the objective function is selected as the total potential energy from 
the displacement method. After selecting the redundants with assuming constant geometry, 
other forces are calculated. These displacements result in the nodal displacements used for the 
evaluation of the total potential energy. In a subsequent step, the same process is repeated 
with the difference of employing the new vector u in place of the constant geometry.  
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Figure 8. A six-bar planner truss 

 
Table 2. The results of geometric nonlinear analysis for linear and nonlinear material 

Nodal displacement (mm) Member forces (kN) 
Material Method 

Potential 
energy 
(kN-m) u4 v4 u5 v5 r1 r2 r3 r4 r5 r6 

Ref. [1] -1.0560 - - - - 51.015 94.1406 -6.5528 42.0295 3.9638 5.2843 

Ref. [8] -1.059735 14.12 2.83 0.30 2.32 49.811 94.142 -6.688 42.974 4.035 5.352 
Linear Peresent 

work 
(AC) 

-1.0597 14.12 2.83 0.30 2.32 49.811 94.142 -6.688 42.974 4.035 5.352 

Ref. [1] -11.2614 - - - - 50.2482 93.2042 -7.1814 41.921 4.5218 5.7016 

Ref. [8] -11.27096 139.71 28.46 3.30 25.00 50.163 93.190 -7.195 41.494 4.535 5.782 
Nonlinear Present 

work 
(AC) 

-11.271 139.71 28.46 3.30 25.00 50.163 93.190 -7.195 41.494 4.535 5.782 

 
The algorithm consists of the following steps: 

1. u(1) = 0 is considered and the redundant force are taken as the parameters of the AC (i = 1). 
2. Having u(i); the matrices B0

(i), B1
(i) and E(i)are constructed. 

3. Having cross sections of the members, the internal forces and stresses are calculated. 
4. Having the stresses, the strains is calculated using stress-strain relationship (ε(i) = f(σ(i)), 

and then d(i) (elongation of members) is formed. 
5. Forming d(i) = E(i)t u(i) and considering that E(i)t is a function of u(i-1), a suitable u(i) is 

selected. 
6. The magnitude of V is then calculated from Equation (21). 
7. Putting i = i + 1 and going to Step 2, the process is repeated until V is minimized. 

 
4.2. Example 2 

Consider a truss with 31 members as shown in Figure 9. This truss has 6 bays which has been 
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studied in Refs. [1,8,9]. The stress-strain relationship is considered to be bilinear as 
 

 




>××
<<××

=
(196MPa) kg/cm 2000σ     MPa)10(0.98  kg/cm 100.1

(196MPa) kg/cm 2000σ0MPa)10(19.6 kg/cm 102.00
E 2426

2426

 (25) 

 
Because of the high degree of static indeterminacy, the first method is not efficient, and 

therefore the second approach is adopted. The internal forces in 6 bars are taken as the AC 
unknowns. Table 3 contains the results of AC and those of the existing references for 
comparison. 
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Figure 9. Geometry and numbering of 31-member truss 

 
Table 3. The results of geometric nonlinear analysis of the 31-bar truss 

Member forces (ton) an (kN) 
Method r2 ton 

(kN) 
r3 ton 
(kN) 

r4 ton 
(kN) 

r5 ton 
(kN) 

r8 ton 
(kN) 

r9 ton 
(kN) 

r10 ton 
(kN) 

r11 ton 
(kN) 

r20 ton 
(kN) 

r27 ton 
(kN) 

Ref. [1] 
441.71 

(4328.8) 

515.42 

(5051.1) 

397.51 

(3895.6) 

277.82 

(2722.6) 

-429.81 

(-4212) 

-501.74 

(-4917) 

-385.42 

(-3777) 

-277.11 

(-2716) 

-203.18 

(-1991) 

202.91 

(1988.5) 

Ref. [8] 
442.8 

(4339.4) 

514.8 

(5045.0) 

397.6 

(3896.5) 

278.1 

(2725.4) 

-430.7 

(-4221) 

-504.8 

(-4947) 

-389.9 

(-3821) 

-278.0 

(-2724) 

-203.0 

(-1989) 

204.7 

(2006.1) 

Ref. [9] 
443.11 

(4342.5) 

512.61 

(5023.6) 

397.82 

(3898.6) 

278.61 

(2730.4) 

-431.67 

(-4230) 

-509.98 

(-4998) 

-392.08 

(-3842) 

-278.49 

(-2729) 

-202.72 

(-1987) 

206.15 

(2020.3) 

Peresent 
work (AC) 

442.7 

(4338.7) 

514.6 

(5043.3) 

397.6 

(3896.7) 

278.2 

(2726.5) 

-431.1 

(-4225.0) 

-503.6 

(-4935.5) 

-389.2 

(-3814.4) 

-277.8 

(-2722.6) 

-203.0 

(-1989.5) 

205.2 

(2011.1) 
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5. ANT COLONY ALGORITHM FOR SIMULTANEOUS ANALYSIS AND 
DESIGN 

 
Common methods for designing structures usually involve two separate processes; analysis 
and design. In these classical methods, usually, first a preliminary design is performed, and an 
analysis is then carried out, followed by design of members. In the next step, the new structure 
is analyzed and designed. This process is repeated until an acceptable design is obtained and 
all the requirements are met. For each member, the stress ratio ci obtained by dividing the 
stress resultants to the admissible stress, is not greater than unity. Most of computer programs 
use this method for designing the structures. Here, a method is presented which performs the 
analysis and design process simultaneously by employing only one function that contains all of 
requirements for analysis and design that leads to lesser calculation and run time. For this 
purpose, the stress ratios of members are specified in the onset of simultaneous analysis and 
design (SAND) process. One may choose to design which makes full usage of the capacity of 
the members (FSD). This happens when the stress ratios ci of the members become equal to 
unity. A classical design hardly ever leads to a design in which, the full capacity of all 
members are used and some members will have additional free capacity. In some designs, 
however, it is ideal to have specified additional capacity for certain members. Here, choosing 
each ant q, r is calculated. Knowing the permissible stress, the suitable cross-sections can be 
selected. As an example, one can choose the section such that it corresponds to a specified 
stress ratio. This problem is of importance in seismic design of frames, where strong column 
design is preferred. The method is clarified by the following examples accompanying the 
required formulations. 

 
5.1. Example 1 

Here, we want to design the truss shown in Figure 7 with new analysis goal function using 
AC. Redundant forces consist of two internal forces denoted by q1 and q2. The complementary 
energy of the structure should be minimized for analysis by the force method. 

If the cross sections Ai (i =1, . . . , m) are known, then the analysis can be performed using 
the ant colony algorithm as described in the previous section. Since the main aim is to design, 
one can obtain cross-sections A corresponding to the selected values of q (for each ant). Uc 
can be calculated as 

 }]{[}{
2
1

m
tc rFr=U  (26) 

 

 [ ] 







=

q
p

BBr 10}{  (27) 

 
For a truss member with linear material, Fm =L/EA and for each selected ant (q), one can 

obtain {r} from Equation (27), and each r corresponds to a set of cross-sectional areas (A), 
the entries of which appear in the denominator of Fm. Therefore, Fm is a function of L, E, q and 
c (i.e. A is eliminated). Thus Uc is a function of q and c only. The pre-selected entries for c 
may be imposed at this stage. The role of c in finding A in terms of q has thus been shown, 
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and Uc can easily be minimized by the ant colony algorithm. Uc should be minimized in which 
[Fm] is a function of the unknowns q, c, L and E as 

 

 ( )EL,c,,
(E

L
EA
L q

rf
F g===

),,
][

cLm  (28) 

 
Now we introduce a goal function for truss structures for the purpose of minimization 

using ant colony with minimum parameters. 
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From Equations (28) and (30), for each member we have 
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Substituting Fmi from Equation (31) into Equation (32) leads to  
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σai  is the maximal allowable stress for each member. Suppose σa and E are constants for all 
members, then the goal function can be written as 
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In this study, Fu is minimized by ant colony algorithm. For the introduced functions, [q] is 

unknown and Li, ci ,  σai  and Ei are specified for each member. Suppose ignoring the buckling 
effect, we want to have the stress ratio 0.8 for the members and 25 ksi (172.375 Pa) for the 
allowable stress. Application of the present method leads to some cross-section with nearly 
zero area. In this case, Amin = 0.01 in2 (0.0645 cm2) is selected. The calculation of this 
example performed by AC using 30 ants and in 25 iterations. Results are presented in Table 4. 
The results obtained from GA in Ref. [1], are also provided for comparison in Table 4. 

 
Table 4. Results for the 10-bar planar truss 

AC 

                   {q} ={0.037,12.370} t k 

                   {q} ={0.165,55.093 } t kN 

                   {r} ={14.9778, 0.0370, -12.4630, -7.5222, 0.0744, 0.0780, 12.3700, -0.1300, -7.4220, 0.1040} t K 

                   {r} ={66.7075, 0.1648, -55.5072, -33.5021, 0.3314, 0.3474, 55.0930, -0.5790, -33.0558, 0.4632} t kN 

                   A={0.7489 , 0.01, 0.6231, 0.3761, 0.01, 0.01, 0.6185, 0.01, 0.3711, 0.01} in2 

                         A={4.8316, 0.0645, 4.0200, 2.4264, 0.0645, 0.0645, 3.9903, 0.0645, 2.3942, 0.0645} cm2 

GA [1] 

                   {q} ={0.2,12.301 } t k 

                   {q} ={0.8891,54.6826 } t kN 

                   {r} ={14.88, 0.2, -12.3, -7.62, -0.001, 0.119, 12.301, -0.199, -7.381, 0.159} t K 

                   {r} ={66.1472, 0.8891, -54.6781, -33.8738, -0.0044, 0.5290, 54.6826, -0.8846, -32.8113, 0.7068} t kN 

                    A={0.7440, 0.01, 0.6150, 0.3810, 0.01, 0.01, 0.6151,0.01, 0.3690, 0.01} in2 

                           A={4.80, 0.0645, 3.9677, 2.4581, 0.0645, 0.0645, 3.9684, 0.0645, 2.3806, 0.0645} cm2                    
 

5.2. Example 2 

A 25-bar truss is shown in Figure 10. Table 5 contains the data for design of this truss. Table 
6 provides the results obtained from AC and GA [1]. Comparison between ant colony and 
genetic algorithms shows that AC performs better for SAND. 
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Figure 10. A 25-bar space truss 

  
Table 5. Data for design of the 25-bar space truss. 

Member number Start point (i) End point (j) Length (cm) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

1 
1 
2 
1 
2 
2 
2 
1 
1 
3 
4 
3 
5 
3 
6 
4 
5 
4 
3 
5 
6 
6 
3 
5 
4 

2 
4 
3 
5 
6 
4 
5 
3 
6 
6 
5 
4 
6 

10 
7 
9 
8 
7 
8 

10 
9 

10 
7 
9 
8 

190.5 
331.48 
331.48 
331.48 
331.48 
271.27 
271.27 
271.27 
271.27 
190.5 
190.5 
190.5 
190.5 

460.10 
460.10 
460.10 
460.10 
460.10 
460.10 
460.10 
460.10 
339.00 
339.00 
339.00 
339.00 

Stress constraints 
|σi |≤40 ksi (275.8MPa); i =1, . . . , 25 

ci=1; i =1, . . . , 25 
List of the available profiles 

Ai ≥0.01 in2 (0.06452 cm2); i =1, . . . , 25 
Loading data 

Node 
1 
2 
3 
6 

Px: kips (kN) 
1(4.448) 

0 
0.5(2.224) 

0.6(2.6688) 

PY: kips (kN) 
−10 (44.48) 
−10 (44.48) 

0 
0 

PZ: kips (kN) 
−10 (44.48) 
−10 (44.48) 

0 
0 
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Table 6. Design comparison for the 25-bar truss 

AC 

{A}={0.0266, 0.01, 0.01, 0.01, 0.539, 0.1782, 0.4833, 0.4880, 0.2188, 0.01, 0.01, 0.2811, 0.1025, 0.1055,  

       0.0535, 0.1012, 0.0406, 0.0145, 0.01, 0.01, 0.019, 0.5288, 0.5302, 0.1962, 0.2843} in2 

{A}={0.1716, 0.0645, 0.0645, 0.0645, 3.4774, 1.1497, 3.1181, 3.1484, 1.4116, 0.0645, 0.0645, 1.8135, 

       0.6613, 0.6806,  0.3452, 0.6529, 0.2619, 0.0935, 0.0645, 0.0645, 0.1226, 3.4116, 3.4206, 1.2658,  

       1.8342} cm2 

GA [1] 

{A}={0.0265, 0.01, 0.01, 0.01, 0.0539, 0.1784, 0.4831, 0.4880, 0.2189, 0.01, 0.01, 0.2813, 0.1019, 0.1056,  

          0.0550, 0.1007, 0.0406, 0.0145,0.01, 0.01, 0.021, 0.5294, 0.5305, 0.1962, 0.2842} in2 

{A}={0.1710, 0.0645, 0.0645, 0.0645, 0.3477, 1.1510, 3.1168, 3.1484, 1.4123, 0.0645, 0.0645, 1.8148,  

         0.6574, 0.6813, 0.3548, 0.6497, 0.2619, 0.0935,0.0645, 0.0645, 0.1355, 3.4155, 3.4226, 1.2658,  

          1.8335} cm2  
 

5.3. Example 3 

Consider the planner truss studied in section (3.2). Here, the main aim is to show the 
capability of present method and ant colony algorithm in the nonlinear design of structures. 
The allowable stress is selected as σa = 21 ksi (144.795 MPa). Because of the nonlinearity, 
Equation (35) can not be used as the goal function of minimization and complementary energy 
function (Equation (26)) is selected in this case. Table 7 contains the results obtained from AC 
with ci=1 for all members. 

 
Table 7. Design for the 10-bar truss with nonlinear material. 

{r} ={14.8230, 0.2949, -12.2051, -7.6770, -0.2293, 0.0050, 12.4918, -0.0083, -7.4950, 0.0066} k 

{r} ={66.0180, 1.3135, -54.3583, -34.1911, -1.0214, 0.0220, 55.6350, -0.0367, -33.3810, 0.0294} kN 

{A}={0.7059, 0.0140, 0.5812, 0.3656, 0.0109, 0.0002, 0.5948, 0.0004, 0.3569, 0.0003} in2 

{A}={4.5539, 0.0906, 3.7496,  2.3585, 0.0705, 0.0015, 3.8377, 0.0025, 2.3026, 0.0020} cm2  

 
 

6. OPTIMAL DESIGN USING ANT COLONY ALGORITHM 
 

Since the material cost is one of the major factors in the construction of a building, it is 
preferable to reduce it by minimizing the weight or volume of the structural system. All of the 
methods used for minimizing the volume or weight intend to achieve an optimum design 
having a set of design variables under certain design criteria. In the present method, adding the 
weight term next to the energy term leads in a new goal function for ant colony algorithm. By 
minimizing this function a set of cross sections is obtained for the members of the structure 
with minimum weight and minimum complementary energy satisfying the compatibility. 
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Other design constraints like buckling, displacement, stress, etc. can be added to the goal 
function using a penalty coefficient that can be expressed as  
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 (37) 

 
Where Sd and Sc are the discrete and continuous cross sections, respectively. gm(A) 
corresponds to the violations of constraints, which include stress, displacement and buckling 
constraints. Their magnitudes can be written in the form of the absolute value of existing value 
to permissible value minus one. 

In order to show the capability of the method using the ant colony algorithm, a truss and a 
frame structure are studied in the following examples. 

 
6.1. Example 1: A 10-bar planar truss 

Optimal design of a 10-bar truss, as shown in Figure 11, is considered. Table 8 contains the 
necessary data. Here, a displacement constraint is added (Table 5). In this example, two cases 
are considered, the first is for discrete and the second corresponds to continuous sections. In 
both cases, A and q are design variables, but in discrete case, we employed a code for 
sections. Using the formulation of the previous section and minimizing the Equation (37), the 
results provided in Tables 9 and 10 are obtained. 
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   (a)                                                              (b) 

Figure 11. A simple truss and its loading: (a) A planar truss; (b) The selected basic structure 
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Table 8. Design data for the 10-bar planar truss. 

Material property and constraint data 
Young’s modulus: E =1e7 psi=6.895e7MPa. 
Density of the material: ρ = 0.00277 kg/cm3 =0.1 lb/in3 
Stress constraints 
|σi |≤25 ksi (172.375MPa);      i =1, . . . , 10 
Nodal displacement constraint in all directions of the co-ordinate system 
|σi |≤2 in (5.08 cm);      i =1, . . . , 4 
List of the available profiles 
Case 1: (Discrete sections) 
Ai = {1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 
3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 
14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5} in2  
Ai = {10.4516, 11.6129, 12.8387, 13.7419, 15.3548, 16.9032, 16.9677, 18.5806, 18.9032, 
19.9354, 20.1935, 21.8064, 22.3871, 22.9032, 23.4193, 24.7741, 24.9677, 25.0322, 26.9677, 
27.2258, 28.9677, 29.6128, 30.9677, 32.0645, 33.0322, 37.0322, 46.5806, 51.4193, 74.1934, 
87.0966, 89.6772, 91.6127, 99.9998, 103.2256, 109.0320, 121.2901, 128.3868, 141.9352, 
147.7416, 170.9674, 193.5480, 216.1286} cm2 
Case 2: (Continuous sections)      0.1≤Ai ≤35 in2 (225.8960) cm2;     i =1, . . . , 10 

 
Table 9. Optimal design comparison for the 10-bar planar truss (discrete). 

Method Weight: lb 
(kN) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

Kaveh and 
Rahami [2] 

5490.738 
(24.4228) 33.5 1.62 22.90 14.2 1.62 1.62 7.97 22.9 22.00 1.62 

Shih [10] 5491.71 
(24.4271) 33.50 1.62 22.90 15.50 1.62 1.62 7.97 22.00 22.00 1.62 

Rajeev [11] 5613.84 
(24.9704) 33.50 1.62 22.90 15.50 1.62 1.62 14.20 19.90 19.90 2.62 

Present 
work 

5517.72 
(24.5702) 33.50 1.62 22.90 14.2 1.62 1.62 11.5 22.00 19.90 1.62 

 
6.2. Example 2: A 25-member frame 

Consider the 25-member frame as shown in Figure 12. This frame is designed using the data 
provided in Table 11, considering both flexural and axial complementary energy and satisfying 
the stress and displacement constraints. Table 12 contains the results obtained from the 
present work and other approaches for comparison. 



A. Kaveh and M. Hassani 

 

592 

Table 10. Optimal design comparison for the 10-bar planar truss (continuous) 

Method Weight: lb 
(kN) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

Kaveh and 
Rahami [2] 

5061.90 
(22.5153) 30.67 0.1 22.87 15.34 0.1 0.46 7.48 20.96 21.70 0.1 

Schmit and 
Farshi [12] 

5089.0 
(22.6359) 33.43 0.1 24.26 14.26 0.1 0.1 8.39 20.74 19.69 0.1 

Schmit and 
Miura [13] 

5076.85 

(22.5818) 
30.67 0.1 23.76 14.59 0.1 0.1 8.59 21.07 20.96 0.1 

Venkayya 
[14] 

5084.9 
(22.6176) 30.42 0.13 23.41 14.91 0.1 0.1 8.70 21.08 21.08 0.19 

Rizzi [15] 5076.66 
(22.5810) 30.73 0.1 23.93 14.73 0.1 0.1 8.54 20.95 21.84 0.1 

Kha and 
Willmert 

[16] 

5066.98 
(22.5379) 30.98 0.1 24.17 14.81 0.1 0.41 7.547 21.05 20.94 0.1 

Present 
work 

5095.46 
(22.6899) 30.86 0.1 23.55 15.01 0.1 0.22 7.63 21.65 21.32 0.1 
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Figure 12. A 25-member frame with 39 degrees of static indeterminacy 
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Table 11. Design data for the 25-member frame 
Material property and constraint data 

Young’s modulus: E =206844MPa (30000000 psi). 
Density of the material: ρ = 7830 kg/m3 (0.283 lbm/in3). 

Loading properties 
P1=P2=P3=444.82 kN 

P4=P7=8896.4 kN 
P5=P6=13344.6 kN 

M1=M2=2259.6856 kN-m 
M3=M4=3389.5284 kN-m 

Stress constraints 
|σi |≤165.4752 (24000 psi);      i =1, . . . , 25 (Combined axial and bending stress) 

Nodal displacement constraint in all directions of the co-ordinate system 
|∆ i |≤0.0762 m (0.03 in) ;      i =1,2,3,10,11,12 

Design variables  
Ai;       i =1, . . . , 25 

0.0032258≤Ai m2;     i =1, . . . , 25 
Properties of the available profiles 

S(section modules)=9A 
I(moment of inertia)=75A 

 

Table 12. Optimal design comparison for the 25-member frame 
Method 

Khan et al. [17] Wang and Arora [18] Present work Member number 
A (cm2) 

1 - 832.59 833.44 
2 - 978.19 981.35 
3 - 977.19 972.33 
4 - 198.24 199.20 
5 - 852.33 855.19 
6 - 32.26 32.26 
7 - 842.81 841.14 
8 - 150.09 155.23 
9 - 1094.97 1089.34 
10 - 32.26 32.26 
11 - 771.04 769.92 
12 - 711.92 715.62 
13 - 32.26 32.26 
14 - 790.73 791.49 
15 - 32.26 32.26 
16 - 347.21 342.50 
17 - 1225.39 1227.38 
18 - 32.26 32.26 
19 - 789.39 788.28 
20 - 32.26 32.26 
21 - 769.71 768.92 
22 - 38.88 39.12 
23 - 32.26 32.26 
24 - 32.26 32.26 
25 - 295.01 295.05 
 Total volume (m3) 
 3.070543 3.070543 3.070536 
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6. CONCLUDING REMARKS 
 

In this article new formulations are presented for linear and nonlinear analyses, considering 
material and geometric nonlinearity, design and optimization of structures for use in the ant 
colony algorithms. These methods employ basic ideas from potential and complementary 
energy and employ a continuous ant colony algorithm. AC performs nonlinear analysis of 
structures without using the direct solution of equations as required in classical methods. 
Formulation in terms of energy concepts permits the efficient application of AC in 
optimization. The present method can easily be adopted for more general structural problems. 
Beams, frames, plates, shells, volumes can be treated in a similar way. The examples studied 
in this paper for analysis, design and optimization illustrate the capability and the accuracy of 
the present methods compared to those of the existing methods. 
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