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ABSTRACT 
 

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal 
shape of concrete gravity dams including dam-water-foundation rock interaction 
subjected to earthquake loading. The hybrid meta-heuristic optimization method is based 
on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization 
(PSO), which is called GSA-PSO. The operation of GSA-PSO includes three phases. In 
the first phase, a preliminary optimization is accomplished using GSA as local search. In 
the second phase, an optimal initial swarm is produced using the optimum result of GSA. 
Finally, PSO is employed to find the optimum design using the optimal initial swarm. In 
order to reduce the computational cost of dam analysis subject to earthquake loading, 
weighted least squares support vector machine (WLS-SVM) is employed to accurately 
predict dynamic responses of gravity dams. Numerical results demonstrate the high 
performance of the hybrid meta-heuristic optimization for optimal shape design of 
concrete gravity dams. The solutions obtained by GSA-PSO are compared with those of 
GSA and PSO. It is revealed that GSA-PSO converges to a superior solution compared to 
GSA and PSO, and has a lower computation cost. 
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1. INTRODUCTION 
 

The economy and safety of a concrete gravity dam depend on an appropriate shape design.  
Hence, a proper shape design of concrete gravity dams is an important problem in dam 
engineering. To find a proper shape, several alternative schemes with various patterns should 
be selected and modified to obtain a number of feasible shapes. The proper shape of dam 
considering the economy and safety of design, structural considerations, etc. is selected as the 
final shape. In order to overcome these difficulties and achieve an optimal shape for dams, 
optimization techniques can be effectively utilized [1]. 

During the last years, various studies related to design optimization of arch dams were 
reported [2-9]. The optimum design of arch dams was considered under static and 
dynamic loads. In these studies, the effect of arch dam-water-foundation rock interaction 
was neglected and conventional mathematical models were utilized for analysis 
approximation and optimization task. In recent years, the studies on the subject of arch 
dam optimization have been developed. Salajegheh et al. [10] employed simultaneous 
perturbation stochastic approximation (SPSA) method with hydrodynamic effects to find 
optimum design. Shape optimization of arch dams using a fuzzy inference system, 
wavelet neural network and grading strategy is performed by Seyedpoor et al. [11, 12]. 
Akbari and Ahmadi [13] optimized real double curvature parabolic arch dam with the 
sequential quadratic programming (SQP) method. Akbari et al. [1] presented a new 
algorithm based on Hermit Splines with SQP method for optimal shape design of arch 
dams. A study was introduced by Seyedpoor et al. [14] so that optimal shape design of 
arch dams including hydrodynamic and the material nonlinearity effects is achieved using 
an improved particle swarm optimization (IPSO) and a wavelet back propagation (WBP) 
neural network. 

The meta-heuristic optimization techniques in comparison with gradient-based methods 
have been suitable tools for global searches. In this study, the optimal shape of arch dams 
including dam-water-foundation rock interaction is investigated using a hybrid meta-heuristic 
optimization method. The hybrid meta-heuristic optimization method is based on a 
combination of gravitational search method (GSA) and particle swarm optimization (PSO), 
called GSA-PSO. The load cases involved here are gravity load, hydrostatic and 
hydrodynamic pressures, and earthquake load which is treated with the time history analysis of 
concrete gravity dam model. The weight of concrete gravity dam body is considered as the 
objective function. The design constraints include behavior, geometric and stability 
constraints. The design variables are the shape parameters of the concrete gravity dam. Due to 
the fact that the computational burden of optimization for time history analysis is high, 
weighted least squares support vector machine (WLS-SVM) is employed to predict the time 
history response of dams. Therefore, WLS-SVM can substantially reduce the computing 
effort of optimization procedure. In order to assess the efficiency of the proposed optimization 
method, the optimization task is performed by GSA, PSO and GSA-PSO algorithms. 
Numerical results show the computational advantages of the proposed meta-heuristic 
optimization for optimal shape design of concrete gravity dams. 
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2. GEOMETRICAL MODEL OF GRAVITY DAM 
 

In order to define the geometrical model of gravity dams, the shape of gravity dams can be 
defined using seven parameters. According to the model shown in Figure 1, a gravity dam can 
be created by a vector X  that has seven components including shape parameters of the 
concrete gravity dam as: 

 }{X 542321 HHHbbbb=  (1) 
 

where b and 1H  are two parameters required to defined crest and free board of gravity dam, 
respectively. H3 depends on H4   and reservoir water level (H). The shape parameters of the 
gravity dam are shown in Figure 1.  
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Figure 1. Geometrical model of gravity dam. 

 
 

3. FINITE ELEMENT MODEL OF GRAVITY DAM-WATER-FOUNDATION 
ROCK SYSTEM 

 
In solving the fluid-structure interaction problem using finite element method (FEM), the 
discretized dynamic equations of the fluid and structure need to be considered simultaneously 
to obtain the coupled fluid-structure equation. 
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3.1. Structural responses 

The solid dam is discretized by using finite elements and its equations of seismic motion 
including the effects of the reservoir and the foundation are expressed as [15]: 

 
 egseseses u QpMuKuCuM +−=++ &&&&&  (2) 

 
where sM  is the structural mass matrix, sC  is the structural damping matrix, sK  is the 
structural stiffness matrix, eu is the vector of the nodal displacements relative to the ground, 

gu&& is the vector of the ground acceleration, eQp  represents the nodal force vector associated 
with the hydrodynamic pressures produced by the reservoir. 

The structural damping in the system is usually included by using a Rayleigh type of 
damping matrix given by [15]: 

 
 SSSC KM βα +=  (3) 

 
where α  and β  are constants adjusted to obtain a desirable damping in the system, usually 
on the basis of given modal damping ratios. 

 
3.2. Reservoir responses 

For a compressible and inviscid fluid, the hydrodynamic pressure p resulting from the ground 
motion of the rigid dam (Figure 2) satisfies the wave equation in the form [16, 17]: 
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where c  is the velocity of sound in water and 2∇  is the Laplacian operator in two dimensions. 

The following boundary conditions are defined by assuming that the effects of surface 
waves and the viscosity of the fluid are neglected. As shown in Figure 2, some boundary 
conditions may be imposed on the fluid domain as follows: 
i) At the fluid-solid interface (S1), 

 nw a
n
p

ρ−=
∂
∂  (5) 

 
where n is the unit normal vector, na  is the normal acceleration on the interface and ρ is the 
mass density of the fluid. 
ii) At the bottom of the fluid domain (S2), 
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Figure 2. The boundary conditions of the fluid domain [17] 

 
where q  is a damping coefficient which is the fundamental parameter characterizing the 
effects of the reservoir bottom materials. Relation between damping coefficient and ratio of 
reflected hydrodynamic pressure wave,α , is [18]: 
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+
−

=α  (7) 

 
iii) At the far end (S3); A Sommerfeld-type radiation boundary condition can be implemented, 
namely: 

 
c
p

n
p &

−=
∂
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 (8) 

 
iv) At the free surface (S4), 
 0=p  (9) 

 
Eqs. (4)-(9) can be discretized to get the matrix form of the wave equation as [16, 17]: 
 

 0)( =++++ geee uuQpKCpM &&&&&&& T
wfeff p ρ  (10) 

 
where Mf, Cf  and Kf  are the fluid mass, damping and stiffness matrices, respectively, and pe 
and eu&& are the nodal pressure and relative nodal acceleration vectors, respectively. The term 

T
wQρ is also often referred to as coupling matrix. 
 

3.3. The coupled fluid-structure equation 

Eqs. (2) and (10) describe the complete finite-element discretized equations for the gravity 
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dam-water-foundation rock interaction problem and can be written in an assembled form as 
[16, 17]: 
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 (11) 

 
where QKQM −== fs

T
wfs andρ . Eq. (11) expresses a second order linear differential 

equation having unsymmetrical matrices and may be solved by means of direct integration 
methods. 

In the present study, the finite-element idealization of gravity dam-water-foundation rock 
system is implemented on the mentioned theory and assumptions. The gravity dam is treated 
as a two-dimensional-linear structure. The four-noded solid element is utilized to mesh the 
dam body. The four-noded fluid element is used to discretize the fluid medium and the 
interface of the fluid-structure interaction problem. The element has four degrees of freedom 
per node: translations in the nodal x, y and x directions and pressure. The translations are 
applicable only at nodes that are on the interface. In the fluid-structure interaction problem, the 
damping matrix of the fluid domain is produced by applying a boundary condition to the 
bottom, sides and far-end of the reservoir. A Sommerfield-type radiation boundary condition 
is used at the far-end boundary of the reservoir. Interaction between the fluid and foundation 
rock is considered through a damping boundary condition applied along the bottom and sides 
of the reservoir defined by the second term of Eq. (6). The damping matrix of the dam is also 
accomplished using the Rayleigh damping taken into account by Eq. (3). In this study, 
foundation rock treating as a linearly elastic structure is represented via a four-noded solid 
element as well. The foundation rock is assumed to be massless in which only the effects of 
foundation flexibility are considered and the inertia and damping effects of the foundation rock 
are neglected. The foundation rock is extended to 1.5 times base width of dam. In the analysis 
phase, a static analysis of the gravity dam-water-foundation rock system is initially 
implemented under a gravity load and a hydrostatic pressure and then, the linear dynamic 
analysis of the system is performed using the Newmark time integration method [15]. After 
that, nodal relative displacement vector of the structure is utilized to evaluate the principal 
stresses at the center of dam elements via conventional FEM. 

 
 

4. GRAVITY DAM OPTIMIZATION PROBLEM 
 

The gravity dam optimization problem subjected to earthquake loading is stated as follows: 
 

 
UL
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 (12) 

 
where f, gj and t  are the objective function, the constraints and the time. LX and UX  are the 
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lower bound and the upper bound of the design variables, X.  
According to the geometrical model of the gravity dam described in Section 2, the design 

variable vector can be adopted from Eq. (1). In the optimization problem, )(Xf represents the 
concrete weight of a gravity dam body that should be minimized. The concrete weight can be 
determined by: 

 gVWf cρ==)(X  (13) 
 

where cρ and V are mass density and volume of gravity dam, respectively. g  is gravity 
acceleration.  

Also, in Eq. (12) )( t,g j X  are inequality constraints that may be categorized into the 
behavior, geometric and stability constraints. The behavior constraints dependent on time. In 
this study, the principal stresses of each node for the gravity dam is considered as the behavior 
constraints, which must be satisfied for all time points of the earthquake interval. These 
constraints are expressed as follows: 

 

 njktgk ,...,2,11),(1
1, =−= +σ

σ X
 (14) 

 

 njk
t

g k ,...,2,11
),(2

2, =−=
−σ

σ X
 (15) 

 
where )(1 ⋅σ  and )(2 ⋅σ  are the principal stresses of each node in time t, respectively. +σ and 

−σ are the allowable tensional and compressive stresses. nj is the total number of dam nodes 
which created by meshing of the dam body. 

The stability of a dam is ordinarily expressed in terms of its factors of safety against sliding 
and overturning, respectively. The factor of safety against sliding is simply the ratio of the total 
frictional force, VF , which the foundation can develop to the force tending, HF , to cause 
sliding. The constraint can be expressed as follows [19]: 

 

 75.1−=
∑
∑

H

V
s F

F
g  (16) 

 
The factor of safety against overturning about the toe is the ratio of the resisting moments, 
RM , to the overturning moments, OM , which is considered as stability constraint. It is given 

as [19]: 

 1
M
M

g
O

R
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∑
∑  (17) 

 
A number of constraint-handling techniques have been proposed to solve constrained 
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optimization problems. In this study, the penalty function is used to deal with constrained 
search spaces as: 
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where )(Xfit and rp is modified function (fitness function) and an adjusting coefficient; Rd 
denotes the feasible search space; and )( ,tG X is the penalization factor, which is defined as 
the sum of all active constraints violations; as indicated: 
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This formulation allows that for solutions with violated constraints, the objective function is 

always greater than the non-violated one. 
 
 

5. OPTIMIZATION METHOD 
 

In the present study, to find the optimal shapes of gravity dams a hybrid meta-heuristic 
optimization algorithm is presented. This meta-heuristic optimization algorithm is based on a 
combination of gravitational search method (GSA) and particle swarm optimization (PSO), 
called GSA-PSO. In this section PSO and GSA algorithms are described at first, and then the 
proposed GSA-PSO is introduced. 

 
5.1. Particle swarm optimization 

Recently, in structural engineering the successful applications of PSO as an optimization 
engine have been reported by Refs. [20-26]. PSO has been inspired by the social behavior of 
animals such as fish schooling, insects swarming and birds flocking. The PSO algorithm is 
introduced by Kennedy and Eberhart [27] in the mid 1990s, while attempting to simulate the 
graceful motion of bird swarms as a part of a socio-cognitive study. It involves a number of 
particles, which are initialized randomly in the search space of an objective function. These 
particles are referred to as swarm. Each particle of the swarm represents a potential solution of 
the optimization problem. The ith particle in lth iteration is associated with a position 
vector, l

iX , and a velocity vector, l
iV , that shown as following, 
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where D is dimension of the solution space. 

The particle fly through the solution space and its position is updated based on its velocity, 
the best position particle (pbest) and the global best position (gbest) that swarm has visited 
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since the first iteration as, 
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where 1r  and 2r  are two uniform random sequences generated from interval [0, 1]; c1 and c2 

are the cognitive and social scaling parameters, respectively and lω  is the inertia weight used 
to discount the previous velocity of particle preserved.  

Shi and Eberhart [28] proposed that the cognitive and social scaling parameters c1 and c2 to 
be selected such that c1=c2=2 to allow the product c1r1 or c2r2 to have a mean of 1. One of the 
main parameters affecting the performance of PSO is the inertia weight )(ω in achieving 
efficient search behavior. A dynamic variation of inertia weight is proposed by linearly 
decreasingω with each iteration algorithm as shown in Eq. (23) [28], 

 

 l
lmax

minmax
max

ωω
ωω

−
−=  (23) 

 
where maxω and minω are the maximum and minimum values of ω , respectively. Also, lmax  is 
the numbers of maximum iteration.  

 
5.2. Gravitational search algorithm 

The gravitational search algorithm (GSA) was first introduced by Rashedi et al. [29] as a new 
stochastic population-based heuristic optimization method. This approach provides an iterative 
method that simulates mass interactions, and moves through a multi-dimensional search space 
under the influence of gravitation. This heuristic algorithm has been inspired by the Newtonian laws 
of gravity and motion. In GSA, agents are considered as objects and their performance are 
measured by their masses, and all these objects attract each other by the gravity force, while this 
force causes a global movement of all objects towards the objects with heavier masses. 

In GSA, each agent of the population represents a potential solution of the optimization 
problem. The ith agent in lth iteration is associated with a position vector, )(liX , and a 
velocity vector, )(liV , that shown as following: 
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The mass of each agent is calculated after computing the current population fitness for a 

minimization problem, as follows [29]: 
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where N, Mi(l) and )(lfiti represent the population size, the mass and the fitness value of 
agent i at lthe iteration, and )(lworst and )(lbest are defined as follows: 

 
 )}(,...,)(,)(min{)( 21 lfitlfitlfitlbest N=  (27) 
 
 )}(,...,)(,)(max{)( 21 lfitlfitlfitlworst N=  (28) 

 
To compute the acceleration of an agent, total forces from a set of heavier masses applied 

on it should be considered based on a combination of the law of gravity and the second law of 
Newton on motion (Eq. (29)) [29]. Afterwards, the next velocity of an agent is calculated as a 
fraction of its current velocity added to its acceleration (Eq. (30)). Then, its position could be 
calculated using Eq. (31). 
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where d

ia , d
iv and d

ix  present the acceleration, velocity and position of ith agent in dimension 
d, respectively. irand  and jrand  are two uniform random numbers in the interval [0, 1]; ε  

is a small value; n  is the dimension of the search space; and )(lR ji  is the Euclidean distance 
between agent i and j. kbest is the set of first K agents with the best fitness value and biggest 
mass, which is a function of time, initialized to 0K  at the beginning and decreased with time. 
G is a decreasing function of time. In this study, G(l) is considered as a linear decreasing 
function in the GSA algorithm as follows: 
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This function is set to 0G  at the beginning and decreases exponentially towards zero with 
lapse of time. 

 
5.3. The hybrid of GSA-PSO method 

The PSO algorithm is one of the most proficient meta-heuristic techniques which is an 
algorithm inspired by the social behavior of flock populations. In structural engineering the 
shortcoming of the PSO algorithm is to need a great number of function evaluations (structural 
analyses) for finding the global solution. It is expected that this drawback can be dealt with 
selecting an adequate initial swarm. In this study, the GSA algorithm as local search finds an 
optimal initial swarm for commencing the PSO algorithm. In the first stage of the GSA-PSO 
method, a preliminary optimization is performed by employing the GSA algorithm. The 
optimum design found by GSA, XGSA, is copied NGSA times to create the some part of the 
optimal initial swarm in the second stage. Other particles of the initial swarm, 
i.e. )...,,2,1(, GSAPSOjrnd NNj −=X , are selected randomly to complete the initial swarm. 
Finally, PSO is employed to find a more accurate optimum design using the optimal initial 
swarm. The algorithm flow of GSA-PSO strategy is shown in Figure 3.  

 
GSA algorithm 

Optimum solution: 

GSAX  

Particle 1: 

GSAX  
Particle NGSA: 

GSAX  
… Particle NGSA+1: 

1, +GSANrndX  
Particle NPSO: 

PSONrnd ,X  … 

Initial swarm for PSO 

PSO algorithm 

Optimum Solution 
 

Figure 3. The algorithm flow of GSA-PSO 
 
 

6. PREDICTING THE STRUCTURAL RESPONSES USING WLS-SVM 
 

Recently, support vector machines (SVMs) have been successfully used as an excellent 
machine learning algorithm [30]. The SVM is developed based on the structural risk 
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minimization (SRM), which can escape from several drawbacks, such as local minimum and 
the necessity of a large number of controlling parameters in artificial neural networks (ANNs). 
The weighted least squares support vector machines (WLS-SVM) is introduced by Suykens et 
al. [30] to decrease the training computational effort of SVM in the large-scale problem. 
Further, WLS-SVM predicts functions more robust and precise by assigning weights and 
performance generality of WLS-SVM is better than that of least squares version of SVM 
(LSSVM) [30, 31]. WLS-SVM is described as the following optimization problem in primal 
weight space [30]: 

 ∑
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subject to the following equality constraints: 
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with n

iii y 1},{ =x  a training data set, input data nR∈ix  and output data Ryi ∈ . 
dn RR →:(.)ϕ is a function which maps the input space into a higher dimensional space. The 

vector dR∈w represents weight vector in primal weight space. The symbols Rei ∈  and 
Rb ∈  represent error variable and bias term, respectively. By the optimization problem (33) 

and the training set, the model of WLS-SVM is defined as follows: 
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It is impossible to indirectly calculate w  from (33), because of the structure of the function 

)(xϕ  is unknown in general. Therefore, the dual problem shown in Eq. (33) is minimized by 
the Lagrange multiplier method as follows: 
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According to the Karush-Khun-Tucker (KKT) conditions, eliminating w  and e  the 

solution is given by the following set of linear equation: 
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According to Mercer’s condition, a kernel .),(.K  is selected, such that: 
 

 
H

K )(),(),( xxxx ϕϕ=  (39) 
  
So, the resulting WLS-SVM model for the prediction of functions becomes: 
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Weight kv  is estimated as follows [32, 33]: 
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where ŝ  is a robust estimate of the standard deviation of the error variables ( 1/ −= iiii Dae ), 

and the constants c1 and c2 are typically chosen as 5.21 =c and 32 =c [33]. Here 1−
iiD denotes 

the ith primal diagonal element in the inversion of matrix D which is the matrix on the left-
hand of the system of the linear Eq. (37) [34]. After weights kv  are determined, the model 
(40) is achieved by solving the WLS-SVM problem (Eq. (39)). 

In this study, radial basis function (RBF) is selected as the kernel function of WLS-SVM. 
The kernel function is defined as follows: 
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where σ is positive real constant, and is usually so-called kernel width. 

 
 

7. TEST EXAMPLE 
 

In order to investigate the computational efficiency of the hybrid meta-heuristic optimization 
method for the shape optimization of concrete gravity dams, Pine flat dam is considered as a 
real-world structure.  This dam located on King's River near Fresno, California. The dam 
structure is 400 ft height with a crest length of 1840 ft and its construction about 9491.94 kip 
concrete. The detailed properties of the dam-water system have been provided in Refs. [35, 
36]. The properties of concrete, water and foundation are shown in Table 1. 

  



J. Salajegheh and S. Khosravi 

 

622 

Table 1. The properties of materials  

Value Property Material 
3.25×106 psi Modulus of elasticity 

0.2 Poisson's ratio 
155 lb/ft3 Mass density 

Concrete 

62.4 lb/ft3 Mass density 
4720 ft/sec Wave velocity 

0.817 Wave reflection coefficient 
Water 

107 psi Modulus of elasticity 
0.33 Poisson's ratio 

0 Mass density 
Foundation 

 
The ground motion recorded at Taft Lincoln School Tunnel during Kern country, 

California, earthquake of July 21, 1952, is selected as the excitation for analyses of Pine Flat 
dam [35, 36]. The ground motion acting transverse to the axis of the dam is defined by the 
S69E component of the recorded motion. This component of the recorded ground motion is 
shown in Figure 4. 

In the present study, to create the gravity dam geometry, seven design variables are 
considered. The lower and upper bounds of design variables required for the optimization 
process can be determined using some preliminary design methods [37]: 

 

 

ftHft

ftHftftHftftbft

ftbftftbftftbft

330270

66.34132.3024.156.124.2576.210

727.34413.28166.34232.3034.3967.16

5

424

31

≤≤

≤≤≤≤≤≤

≤≤≤≤≤≤

 (43) 

 
For design optimization of the selected dam two cases related to various conditions of dam-

water-foundation rock interaction problem are considered as follows: 
 
Case 1: Dam with full reservoir and rigid foundation. 
Case 2: Dam with full reservoir and flexible foundation. 
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Figure 4. Ground motion at Taft Lincoln Tunnel; Kern country, California, 1952 

 
The parameters of PSO, GSA and GSA-PSO used in optimization process are given in 

Tables 2, 3 and 4, respectively.  
 

Table 2. The parameter of PSO method 

Parameter Value 
Population size 50 

Total iteration number 100 

minω  0.1 

maxω  0.9 

 
Table 3. The parameter of GSA method 

Parameter Value 
Population size 50 

Total iteration number 100 
G0 50.0 

 
Table 4. The parameter of GSA-PSO method 

Parameter Value 
The initial number of particles generated via GSA 20 

The initial number of particles generated on random basis 30 
The maximum number of iterations performing by GSA 50 
The maximum number of iterations performing by PSO 50 
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In this study, the optimization task is performed by a core™2 Duo 2 GHz CPU and all 
computing times are evaluated by clock time. 

 
7.1. Finite-element model of Pine Flat gravity dam 

An idealized model of Pine Flat gravity dam-water-foundation rock system is simulated using 
FEM as shown in Figure 5. The material properties of the dam, water and foundation rock are 
given in Table 1. The geometric properties of the dam can be found in Ref. [35]. 

  

 
Figure 5. Finite-element model of Pine Flat gravity dam-water-foundation rock system 

 
In order to validate FEM with the employed assumptions, the first natural frequency of the 

symmetric mode of the gravity dam for four cases are determined from the frequency response 
function for the crest displacement. The results are compared with those reported by Chopra 
and Chakrabarti [36] as given in Table 5. 

 
Table 5. A comparison of the natural frequencies from the literature with FEM 

Natural frequency (Hz) 
Error 
(%) 

The present 
work 

Chopra and 
Chakrabarti [36] 

Water 
Foundation 

rock 
condition 

Case 

0.082 3.152  3.1546 Empty Rigid 1 
0.242 2.525 2.5189  Full Rigid 2 
0.085 2.93  2.9325 Empty Flexible 3 
2.18 2.383 2.3310  Full Flexible 4  
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It can be observed that a good conformity has been achieved between the results of the 
present work with those reported in the literature.  

 
7.2. Training and testing WLS-SVM 

To generate a database for training and testing WLS-SVM, design variable vector of the gravity 
dam defined in (1) is considered as the input vector of WLS-SVM, and the sum of all active 
constraints violations given by (19) is taken as the output of WLS-SVM. Design of computer 
experiments [38] is employed by generating a set of combinations of the intervening design 
variables. This set is spread in the entire intervening variables by design of computer experiments. 
In this study, Latin Hypercube Design (LHD) proposed for computer experiments by McKay et al. 
[39] is used for generating 200 gravity dam samples. Then, the effective responses of all gravity 
dam samples are determined using finite element analysis (FEA). It should be noted that a full 
dynamic analysis for the design cases 1 and 2 takes about 1.4 and 1.64 minutes, respectively. The 
samples are selected on a random basis and from which 150 and 50 ones are employed to train and 
test the performance generality of WLS-SVM. 

A mean absolute percentage error, MAPE, is used to evaluate the performance of the 
WLS-SVM model as follows: 
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where y and y  are actual value and predicted value, respectively; and nt is the number of 
testing samples. 

Furthermore, several statistical methods, relative root-mean-squared error, RRMSE, and 
the absolute fraction of variance, R2, are used to compare predicted and testing values for 
computing the model validation. The smaller RRMSE and MAPE and the larger R2 are 
indicative of better performance generality. The RRMSE and R2 are defined by using the 
following equations: 
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In this study, the 10-fold CV is used for finding the parameters and training WLS-SVM. 

The statistical values and the optimal values of γ and σ  for predicting the effective responses 
of dam samples found from testing modes are obtained and the results are listed in Table 6. 
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 Table 6. Statistical values based on the optimal values of the WLS-SVM in testing mode 

Optimal values Statistical values 
Case 

γ  σ  MAPE RRMSE R2 

1 1364.151 80.397 2.4 0.0292 0.9997 

2 489.439 32.856 3.62 0.0305 0.9992 

 
All of the statistical values in the table demonstrate that all the WLS-SVM models achieve 

a good performance generality in predicting the responses of gravity dam samples. 
Performance generality of the WLS-SVM in testing mode for two cases are shown in 

Figures 6 and 7 in term of APE. 
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Figure 6. APE of the predicted responses for case 1 
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Figure 7. APE of the predicted responses for case 2 
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7.3. Result of optimization 

In order to consider the stochastic nature of the optimization process, ten independent 
optimization runs are performed for each design case and the best solutions are reported. The 
optimum designs of the gravity dam for two cases using GSA, PSO and the proposed GSA-
PSO based on WLS-SVM as approximate analysis are given in Tables 7 and 8. The 
convergence histories of the best solutions of PSO, GSA and GSA-PSO for two cases are 
shown in Figures 8 and 9. 

 
 Table 7. Optimum designs of the gravity dam for case 1 

Optimization Method Variables 
PSO GSA GSA-PSO 

b (ft) 25.3849 21.5092 19.6700 
b1 (ft) 31.4449 31.7477 32.0582 
b2 (ft) 29.5940 30.1002 29.2068 
b3 (ft) 212.4020 219.4519 216.8624 
H2 (ft) 15.4000 12.6024 12.6000 
H4 (ft) 341.6600 325.4956 331.1774 
H5 (ft) 270.0000 270.0000 270.0000 

Concrete weight (kip) 8309.34 8216.27 8025.79 
Maximum violated constraint (%) 0.0 0.0 0.0 

Data generation time (min) 279 279 279 
Time of training WLS-SVM (min) 1.04 1.04 1.04 

Optimization time (min) 0.48 2.69 3.09 
Overall computing time (min) 280.52 282.73 283.13 
Required approximate analyses 3800 3350 3100 

 
Table 8. Optimum designs of the gravity dam for case 2 

Optimization Method Variables 
PSO GSA GSA-PSO 

b (ft)  24.6921 26.4482 21.1757 
b1 (ft) 31.1698 32.2928 32.2166 
b2 (ft) 31.0539 30.6843 30.5364 
b3 (ft) 223.7499  226.7058 239.4790 
H2 (ft) 15.3994 12.9876 13.7315 
H4 (ft) 341.6600 336.7767 337.5632 
H5 (ft) 280.5927 270.0000 270.0000 

Concrete weight (kip) 8777.68 8744.28 8675.56 
Maximum violated constraint (%) 0.0 0.0 0.0 

Data generation time (min) 327.56 327.56 327.56 
Time of training WLS-SVM (min) 1.04 1.04 1.04 

Optimization time (min) 0.58 2.77 3.12 
Overall computing time (min) 329.18 331.37 331.72 

Required approximate analyses 4000 3500 3150 
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The optimal dams are also analyzed by an accurate FEA and the value of maximum 
violated constraint for all design cases is determined. The value is zeros for all design cases. 
Therefore, the optimum solutions are proper designs. The importance of the solutions may be 
more revealed when a large saving in overall computing time, owing to employing an 
approximate analysis instead of using a time consuming FEA, is noticed. In GSA-PSO the 
maximum numbers of searches (i.e. number of approximate structural analyses) for two cases 
are set equal to 3100 and 3150, respectively. Therefore, the numerical results show that the 
GSA-PSO converges to superior solutions to GSA and PSO while needing much lower 
function evaluations.  
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Figure 8. Convergence histories of the best solution of PSO, GSA and GSA-PSO for case 1. 
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Figure 9. Convergence histories of the best solution of PSO, GSA and GSA-PSO for case 2. 
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8. CONCLUSIONS 
 

A hybrid meta-heuristic optimization method is developed to find the optimal shapes of 
concrete gravity dams including dam-water-foundation rock interaction subjected to 
earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of 
gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called 
GSA-PSO. The main idea behind the proposed GSA-PSO is to combine the advantages and 
avoid the disadvantages of the GSA and PSO methods. Explicitly, GSA-PSO can increase the 
probability of finding the global optimum while requiring a lower structural analysis. The 
weighted least squares support vector machine (WLS-SVM) is utilized to approximate the 
dynamic analysis of the gravity dam instead of directly performing it by a time consuming 
finite element analysis (FEA). In order to assess the merits of the proposed GSA-PSO and 
WLS-SVM an existing gravity dam is considered and the optimization is performed for 
various conditions of the interaction problem. Numerical results show that the proper optimal 
design can be achieved for the gravity dam. In optimization procedure, FEA is replaced by a 
WLS-SVM as approximate analysis. The optimum designs obtained by the proposed GSA-
PSO are also compared with those produced by GSA and PSO. GSA-PSO shows the 
improvement in terms of computational efficiency, optimum solution, the number of function 
measurements and convergence history in the optimization process. 
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