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ABSTRACT 
 

This paper proposes an effective algorithm based on the level set method (LSM) to solve 
shape and topology optimization problems. Since the conventional LSM has several 
limitations, a binary level set method (BLSM) is used instead. In the BLSM, the level set 
function can only take 1 and -1 values at convergence. Thus, it is related to phase-field 
methods. We don’t need to solve the Hamilton-Jacobi equation, so it is free of the CFL 
condition and the reinitialization scheme. This favorable properties lead to a great time 
advantage in this method. In this paper, the BLSM is implemented with the additive operator 
splitting (AOS) scheme and several numerical issues of the implementation are discussed. 
The proposed scheme is much more efficient than the conventional level set method. Several 
2D examples are presented which demonstrate the effectiveness and robustness of the 
proposed method.    
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1. INTRODUCTION 
 

Nowadays structural topology optimization problems are very important and challenging in 
many engineering fields. This branch of engineering science has made notable progress in 
recent three decades. Up to now, considerable researches and various topology optimization 
methods such as homogenization methods [1-4], Solid Isotropic Material with Penalization 
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(SIMP) methods [5,6] and Evolutionary Structural Optimization (ESO) methods [7] have 
been proposed. Recently, the level set methods [8-10] which were originally proposed for 
tracking the propagation of fluid interfaces, have been applied into structural topology 
optimization effectively [11,12]. In this method the boundaries of design domain are 
implicitly represented by the zero level set of a higher dimensional function. Thus, level set 
method (LSM) can easily handle different shape and topology changes such as merging, 
splitting and developing sharp corners. In this method, one has to solve Hamilton-Jacobi 
equation and this causes several limitations such as reinitialization process, CFL condition 
and dependency of final design to initial guess. To overcome these difficulties several 
alternative LSMs have been proposed [13-23]. One of the recent variants of the traditional 
LSM is the binary level set method (BLSM) [21-23]. In this method, the level set functions 
are discontinuous functions at convergence. In contrast to the classical level set method 
which the level set function should be chosen continuous and smooth function, for the 
BLSM, the level set function is discontinuous and we require the its value to be 1 and –1 at 
convergence. This method is in fact very similar to the phase filed model, which has been 
applied to image processing [24] and optimal shape design [25,26]. Recently, the BLSM is 
used for image segmentation and elliptic inverse problems [22,27].  

In this paper, the BLSM is employed to solve constrained minimization problems in 
structural topology optimization problems, using the augmented Lagrangian method. Since 
the BLSM is closely related to the phase-field model, an operator splitting scheme, often 
used for phase-field models, is combined with the binary level set model for an efficient 
implementation of the numerical computation of the BLSM.  

The remainder of this paper is organized as following. First the conventional level set 
method is introduced in section 2. In section 3, the statement of optimization problem is 
planned. After that, the binary level set method is presented in section 4. Then, this method in 
the structural topology optimization problem is applied in section 5. Some implementation 
issues are given in section 6, and to show the advantages of this method, we present several 
numerical examples in section 7. Finally, the conclusion is given in the last section.    

 
 

2. LEVEL SET METHOD 
 

The level set method is an implicit method for describing the evolution of an interface 
between two domains. It makes use of a function , referred to as the level set function, 

which represents the boundary as the zero level set and nonzero in the domain [9, 10]. 
According to the value of the level set function, 
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where dD   denotes the design domain, which all admissible form of   a smooth 
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boundary open set place in.(i.e. D ) and t  is time. In the above context, the level 
set function is used as a switch to distinguish between the two domains present in the 
computational space. The boundary is embedded as the zero level of the level set function. 
During the optimization process, the level set surface may move up and down, and this 
causes the embedded boundary to undergo drastic shape or topological changes. From 
beginning to end, the value of the level set function on the boundary is constantly kept to be 
zero, 
 
  xx  , 0.0)(  (2) 

  
If we differentiate the above equation with respect to time t, we can get: 
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where 
dt
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xv )( is the velocity vector field, provided based on sensitivity analysis. 
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3. SHAPE AND TOPOLOGY OPTIMIZATION PROBLEM 
 

3.1. Statement of optimization problem 

The optimization goal of the procedure presented in this paper is to minimize the compliance 
(global strain energy) over the structural domain for general loading conditions with a 
constraint on total material volume resource. There exist numerous equivalent formulations of 
the minimum compliance problem that we use which was given in Allaire [11]. 

Let   be a bounded open set, all admissible shapes in working domain D, occupied by a 
linear isotropic elastic material with Hook’s law A in design domain. The objective function 
(compliance) is denoted by )(J  is then formulated as follows: 

 

  
 dvueuAeudsgudvfJ

N

)().(..)(  (5) 

 
where N  is Neumann boundary condition, f, g are body force and surface load respectively, 

u  is the displacement field based on the following linear elasticity equations:    
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where D  is Dirichlet boundary condition. The standard notion for minimum compliance 
design problems can be mathematically defined as follows: 
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3.2. Shape Derivative 

In this section, we use a based gradient method, shape derivative, to guarantee minimization 
of Eq. (7). In [27] Simon and Murat introduce a technique for constructing shape derivative 
by parameterization of domains. We use their approach as follows: 

 

  )(   (8) 

 
where   is a smooth open set domain,   is identity mapping in ),(, ,1 NNN W   . 

The shape derivative of objective function  NJ :)( , is defined as the Frechet 

derivative in ),(, NNW 1 . For   small enough,  
 

 )()()())((  OJJJ   (9) 
 

where )(J  is a continuous linear form on ),(, NNW 1  given as the unique solution to 
Eq. (7). Above equation is called Frechet derivative-based sensitivity and the sensitivity of 
the mean compliance (7) is given as follows on the discussion in [11, 13]. 
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In this formulation H  is mean curvature defined by nH div ,  is the boundary of 

material domain   decomposed in three parts .,, OND D   D  is admissible Dirichlet 

boundary conditions such that ONNDD DD  , is Neumann boundary conditions 

where ND supports a non-homogeneous one and O supports homogeneous one. Let us 

suppose that there is no body force then in (5) 0.0f , thus the objective function is defined as, 
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 
ND
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Therefore, the Frechet derivative of the mean compliance and the volume constrain are of 

the forms, 

  
N
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In this paper, for solving the optimization problem, the augmented Lagrangian method is 

used. The following augmented Lagrangian )(J  is defined using the Lagrange multiplier 

)( K  and penalization parameter )( K . 
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The Lagrange multiplier and penalization parameter are updated as follows at each 

iteration of the optimization process, 
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where )1,0(  is a constant parameter. The shape derivative of the augmented Lagrangian 
which there is no body force, is obtained, 
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To ensure the decrease of the objective function in level set method, the normal velocity 

field must be chosen appropriately. The fast descent or the steepest descent method is used 
as it was proposed in [11, 12] where vn . The normal velocity field in H-J equation is 
substituted with normal component of this direction vn . . 
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The solving of the above equation needs appropriate choice of the upwind difference 
schemes, reinitialization algorithm and extension velocity method, which may require 
excessive amount of computational efforts. Thus, these limit the utility of the level set 
methods [9, 10]. For example, in using of upwind scheme, the time step should satisfy the 
CFL condition which requires the front to cross no more than one grid cell each time step. 
Moreover, in optimization process, the level set surface may become too steep or too flat, 
this may numerical instability. So it is necessary to regularize the level set surface 
(reinitialization). In the next section, the binary level set method is used to overcome these 
drawbacks of the conventional level set method.  

 
 

4. A BINARY LEVEL SET METHOD 
 

The binary level set method (BLSM) was originally proposed by Lie et al [21]. In the 
BLSM, the sub regions are defined by the discontinuous level set functions which take the 
values 1 and 1 at convergence. The representation of two regions ),( 21   can be given by 
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where  can be given implicitly by  kxx  )(|  for arbitrary )1,1(k . Now, 

let 1)( cx  in 1 , and 2)( cx  in 2  then )(x  can be defined as 
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The piecewise constant function r  can be represented as 
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To ensure the BLSFs converges to values 1 and 1 at every point in , these functions 
are required to satisfy, 

 NiK ii ,,2,1 , 01)( 2    (25) 

 
We can also calculate the volume and the perimeter of each sub domain with the 

following formulation,                                                                        
 

 dxdx iiii  
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4.1. Binary level set method for topology optimization problem  

We want to employ the BLSM for solving structural topology optimization problems. In this 
paper, we implement it in two phases. Thus, we just need one BLSF to satisfy the Eq. (25). 
Now, we define the piecewise constant density function in two phases by,  
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Where 1c  and 2c  are the specified characteristic values of the void material, with 01 c , and 

the solid material, with 12 c . To ensure that the level set function   converges to a unique 
value in each sub domain, the piecewise constant constraint is defined as:                              
                                                                  

 1)(       ,    0)( 2  iKK   (28) 

   
This indicates that every point in the design domain must belong to one and only one 

phase and there is no vacuum and overlap between different phases. In this paper, the 
optimization goal is to minimize the compliance over the structural domain for general 
loading condition and several constraints. It can be defined as 
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where  is the structural domain and its boundary is represented by  . Also in the 
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linearly elastic equilibrium equation, u  denotes the displacement field, 0u is the prescribed 

displacement on D , ijklE is the elasticity tensor, ij is the strain tensor and f, g are body force 

and surface load respectively.        
In the objective function )(J , the first term, is the mean compliance where functional 

)()(21)( uuEuF klijijkl 
 
is the strain energy density and   is the material density ratio. 

The second term in the objective function is the regularization term and  is a nonnegative 

value to control the effect of this term. Indeed, this term controls both the length of interfaces 
and the jump of , since the value of   may not be continuous in the BLSM. 1H  defines the 

material fraction for different phases and 0V  is the maximum admissible volume of the design 

domain. 2H  as mentioned before, is the piecewise constant constraint to guarantee the level 
set function belongs to only one phase. If we use the augmented Lagrangian method to convert 
Eq. (29) into an unconstraint one, we have the following form: 
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where R1  and )(2

2  L  are Lagrange multiplier and 0, 21   are penalty 

parameters. Now, we need to find a saddle point of the augmented Lagrangian functional L . 
To find the saddle point of this function when there is no body force, f  we have the 
following equation as suggested by Wei and Wang [20, 29]: 
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In the proposed approach to satisfy the Eq. (31) we use the steepest descent method. 
 

 0
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Thus, the optimization problem is transformed into an ordinary differential problem with 

initial value 0 . The simplest approach for solving the Eq. (37) is to use an explicit scheme. 

But, in this paper, due to the existence of the diffusion term in Eq. (32), we employ a semi-
implicit method with the additive operator splitting (AOS) scheme [30, 31], which 
effectiveness and success have been proved. For updating Lagrange multipliers i and 

penalty parameters i , we have the following equations,   
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In next section, some important numerical implementations are presented and then 

several 2D numerical examples are investigated to verify the robustness and the efficiency 
of the proposed method.  

  
 

5. NUMERICAL IMPLEMENTATION 
 

In this section some important issues for implementing of the proposed BLSM are 
discussed. These implementations are developed in order to improve the performance of the 
proposed method. In the BLSM, one can represent the design domain in an implicit manner 
by a binary level set model that is embedded in a scalar function of a higher dimension. 

 
   )(: KxxS    (39) 

 
Where x is a point in space on the iso-surface , and K is the iso-value, determined by 

the values of level set functions of the adjoining phases, usually the average. For example, in 
two phase problems, the values of the level set function are set 1 or 1  to determine the 
different areas of the two phases, and then the iso-surface value K is chosen as 0 .    

The second term in the objective function in Eq. (29) is the regularization term, which 
plays a very important role. Because of ill-posedness of the original problem, the 
regularization term is necessary. In this work, we use Total-Variation (TV) regularization. 
The TV regularization controls both the perimeter of the level set curves and the jumps of 
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the binary level set surfaces. We use the parameter  in this term to control the influence of 
the regularization term. This parameter plays a vital role not only for the convergence rate of 
the method, but also for the computed solution.  

 
 

6. NUMERICAL EXAMPLE 
 

In this section, two widely studied examples in structural topology optimization are used to 
illustrate the potentials of the present binary level set method. The finite element analysis is 
based on “ersatz material’’ scheme [11], which fills the void areas with one weak material. 
All numerical examples have the following data; Young’s modulus of real material is 
assumed 1 and ersatz material 10-3. This also means 12 c  and 001.01 c , Poisson’ ratio 

for two materials is assumed 0.3 and the thickness 1t . The termination criterion of 
iteration is the relative difference of the objective function values between five successive 
iterations is less than 0.001. 

 
6.1. Cantilever beam 

We consider the well-known cantilever beam structure, as the first numerical example. 
Figure 1 shows the design domain of this kind of structure. The boundary of the left side is 
fixed, and a vertical concentrated force F=1N is loaded at the middle of its right free side. 
The size of the design domain is 80×40 with a squared mesh of size 1×1 and the volume 
fraction is 50%. First, to benchmark the present binary level set method, we apply the 
conventional level set method to solve this example. For this method, the size of time step is 

5.0  and the level set function is reinitialized every three steps. 
 

2L

 

L
 Design Domain F 

 

Figure 1. A cantilever beam 
 
The evolution process of the optimal topology and the level set surface is shown in 

Figure 2. Also figure 3 shows the convergence speed of the objective function and the 
volume ratio for the cantilever beam. To ensure the stability of the explicit scheme, the time 
step size has to be set 0.5 in order to meet the CFL condition. This condition was limited the 
conventional level set method and causing this example is converged after 200 iterations. 
Moreover, the reinitialization procedure is usually computational expensive and also prevent 
the nucleation of new holes inside the design domain. Therefore, the final design will 
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become strongly dependent on the initial guess. It is a trouble work to find the appropriate 
location of these holes at the initial design. These drawbacks limit the first advantages of the 
implicit representation of the design domain. If we use the binary level set method, we will 
overcome the disadvantages of the classical LSM. The evolution process of the optimal 
topology and the binary level set surface is shown in Figure 4. For this method, the size of 
time step is 10  and the other parameters are considered as 400,60,41 21   e  
and 9.0 . 

a) Initial design 

b) Step 45 

c) Step 65 

d) Step 100 

e) Final design 

 
Figure 2. The evolution process of optimal design and the level set function with the 

conventional LSM 
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Figure 3. The evolution process of the compliance and the volume ratio 

 

 

 

 

 

 

 

 

 

 

 

 

a) Initial design 

b) Step 5 

c) Step 15 

d) Step 35 

e) Final design 
 

Figure 4. The evolution process of optimal design and the level set function with the BLSM. 
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The difficult part is to find these parameters which can be chosen after testing different 
values for these parameters. Therefore, different values may lead to different optimal 
topology. Figure 5 shows the strain energy and the volume fraction in different iterations. It 
can be seen that the compliance converges in a fast and stable way due to the present BLSM. 
Compared with the conventional level set method with the upwind numerical scheme, the 
proposed BLSM does not involve any reinitialization for the level set function. Also, for this 
method, we don’t need to solve the Hamilton-Jacobi equation, thus, the level set evolution 
has no apparent restriction by the CFL condition to limit the step size.  

 

 

Figure 5. The evolution process of the compliance and the volume ratio 
 
One of the other advantages of the proposed method is the nucleation property. In the 

BLSM, the nucleation of new holes occurs automatically without any artificial intervention. 
Different material phases can exchange in the entire design domain, and not just on the 
interface, thus it causes creating new holes in the process of level set evolution. To represent 
the aforementioned advantage, we also solve the optimal topology of the cantilever beam 
example when the initial guess of the design domain is solid. The values we have used for 
this scheme are =1e-5, 1=50, 2=450 and =15. The evolution process of the optimal 
topology and the level set surface is shown in figure 6. Also figure 7 shows the convergence 
speed of the objective function and the volume ratio for the cantilever beam. The table 1 
shows the results obtained with classical LSM and the BLSM with holes and without holes 
respectively, where N is the total number of steps, T denotes the total time of the 
optimization and J() is the total strain energy. 

 
Table 1. Comparison of the conventional LSM and the BLSM  

Schemes J(Ω) (objective) T(s) (total time) N (iterations) 

Conventional LSM 63.88 763.72 200 

BLSM with holes 62.73 291.14 115 

BLSM without 
holes 

64.18 219.87 100 
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a) Initial design 

b) Step 10 

c) Step 15 

d) Step 20 

e) Final design  

Figure 6. The evolution process of optimal design and the level set function with the BLSM.  
 

 

Figure 7. The evolution process of the compliance and the volume ratio 
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6.2. Michell type structure with multiple loads 

As the final example, we want to consider the Michell type structure with multiple loads. 
Figure 8 shows the boundary condition of this kind of structure. The left corner of the bottom 
of the design domain is fixed and its right corner is simply supported. Three forces are applied 
at the equal spaced point at the bottom boundary with NF 301   and NF 152  .The design 

domain is 80×40 which is discretized with 3200, 1×1 squared elements. The volume fraction is 
chosen 40%. The BLSM is used for solving this problem without any holes in the initial design 
domain. The time step size is 8  and other parameters are  e1=45, 2=450, =0.95. 
In Figure 9, the evolution of optimal topology is displayed by using the present BLSM. Also 
figure 10 shows the convergence speed of the objective function and the volume ratio for the 
Michell type structure. 

2L

L
 

F2 
F1

Design 

Domain 

F2 

 
Figure 8. A Michell type structure 

a) step 8 

b) Step 15 

c) Step 50 

d) Final design  

Figure 9. The evolution process of optimal design and the level set function with the BLSM 
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Figure 10. The evolution process of the compliance and the volume ratio 

 
 

7. CONCLUSION 
 

In this paper, we proposed the binary level set method for the structural topology 
optimization problems. AS the conventional LSM has several drawbacks, this method can 
be an interesting alternative for it. In the BLSM, we don’t need to solve the Hamilton-Jacobi 
equation, causing we don’t have to meet the CFL condition and the reinitialization 
procedure. Another great advantage is the nucleation property with which the nucleation of 
new holes occurs automatically without any artificial intervention. Therefore, in contrary to 
the Conventional LSM, in the BLSM, the final design is not relevant to the initial guess. 
Moreover, we also solved the minimization problem with the additive operator splitting 
(AOS) scheme for an efficient implementation of the numerical computation of the BLSM. 
Finally, the proposed BLSM is implemented for minimum compliance design of 2D 
structures, and the numerical examples indicate that the proposed method gives as good 
results as the conventional level set methods do. 
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