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ABSTRACT 
 

This paper provides a test method to make a fair comparison between different heuristics in 
structure optimization. When statistical methods are applied to the structural optimization 
(namely heuristics or meta-heuristics with several tunable parameters and starting seeds), the 
"one problem - one result" is extremely far from the fair comparison. From statistical point of 
view, the minimal requirement is a so-called "small-sample" according to the fundamental 
elements of the theory of the experimental design and evaluation and the protocol used in the 
drug development processes. The viability and efficiency of the proposed statistically correct 
methodology is demonstrated using the well-known ten-bar truss on a set of the heuristics 
from the brutal-force-search up to the most sophisticated hybrid approaches. 
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1. INTRODUCTION 
 

In this paper we present a statistically correct methodology for the fair comparison of 
optimization results given by different stochastic approaches in structural optimization. 
According to our opinion, we have to adapt the appropriate elements of the very rigorous 
protocol used to test new drugs, or compare the effects of different drugs or treatments [1]. 
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Naturally, the problem of fair comparison, as a fundamental requirement of the real progress 
is not connected only to the structural optimization. It is a general problem of the heuristic 
community without detectable results [2-7]. When we use statistical methods in the structural 
optimization (namely heuristics meta-heuristics, hybrid methods with several tunable 
parameters and starting seeds) then the usual presentation practice: "one problem - one result" 
is extremely far from the fair comparison. 

From statistical point of view, the least requirement of the fair comparison is a "small-
sample" for each investigated approach and an appropriate "nonparametric-small-sample-test" 
according to the experimental design theory and the very slowly changing structural 
optimization presentation standard. By definition "small-sample" means 10-30 independent 
runs, and as a "nonparametric-small-sample-test" the well-known nonparametric Kolmogorov-
Smirnov test (KST) can be applied.  

In the next section, we briefly describe a hybrid metaheuristic [8, 9] which will be used as 
a solution generator to illustrate the methodology of the fair statistical comparison. In section 3 
we present a very popular structural optimization problem with several solutions given by a 
wide spectrum of approaches and summarize our impressions about current presentation 
standard in the structural optimization. Section 4 illustrates the scenario of the statistically fair 
comparison using a very simple motivating example. The paper closes with some concluding 
remarks. 

 
 

2. THE STRUCTURAL OPTIMIZATION PROBLEM 
 

In this paper, we use a highly simplified but very efficient hybrid metaheuristic for structural 
weight minimization with continuous size variables and displacement and stress constraints to 
illustrate the statistical problems connected to the fair comparison. The "supernatural" 
ANGEL method combines ant colony optimization (AN), genetic algorithm (GE) and local 
search (L) strategy. In the algorithm, AN and GE search alternately and cooperatively in the 
solution space. The powerful L algorithm, which is based on the local linearization of the 
constraint set, is applied to yield a better feasible or less unfeasible solution from the solution 
generated by AN or GE. The highly nonlinear and non-convex large-span and large-scale 
shallow truss examples show that ANGEL can be more efficient and robust than the 
conventional gradient based deterministic or the traditional population based heuristic (meta-
heuristic) methods in solving structural optimization problems. ANGEL produces highly 
competitive results in significantly shorter run-times than the previously developed 
approaches. The benefit of synergy can be demonstrated by standard statistical tests. 

Generally, a weight minimizing continuous structural engineering optimization problem 
can be written as follows: 

 
 ( ) min→XW  (1) 
 
 ( ) [ ]jjj GG , XG ∈  { },M,j K2,1 ∈  (2) 
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 [ ],, iii XXX ∈  { }Ni ,,2,1 K∈  (3) 
 
Where ( )N21 XXX ,,, K=X  is the vector of the design variables, ( )XW  is the weight of the 
structure, ( )XG j , { },M,21 j K,∈  are the implicit response variables (nodal displacements 
and element stresses).  

In ANGEL, a design is represented by set of { }  ,,, ΦXλW , where W  is the weight of the 
structure ( )XW =W , λ  is the penalty factor ( )10 ≤≤ λ , X  is the current set of size 
variables (cross-sectional areas) for member groups. The fitness function (the pheromone 
intensity) ( )XΦ =Φ  ( )20 ≤Φ≤  is defined as following: 
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where ( )WW  is the minimal (maximal) weight of the structure, according to the given design 
space and λ  is non-smooth function of the "normalized" constraint violation terms: 
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The applied structural model was a large deflection truss model with analytical derivatives. 

According to the systematic simplification, ANGEL is based only three operators (see Figures 
1-3): random selection (AN+GE), random perturbation (AN) and random combination (GE). 
In the algorithm the traditional mutation operator is replaced by the local search procedure as 
an "optimal" mutation. That is, rather than introducing small random perturbations into an 
offspring solution, a gradient based local search is applied to improve the solution until a local 
optimum or the maximal number of iterations is reached. The main procedure of the proposed 
meta-heuristic method follows the repetition of these two steps: (1) AN with L and (2) GE 
with L. In other words, firstly generates an initial population, after that, in an iterative process 
AN and GE search alternately and cooperatively on the current solution set. The initial 
population is a totally random set. The random perturbation and random combination 
procedures which are based on the normal distribution, call the random selection function, to 
select a “more or less good” solution from the current population. The higher the fitness 
values of a solution, the higher the chance that it will be selected by the function. The random 
perturbation procedure uses the continuous inverse method to generate a new solution from 
the old one. The random combination procedure generates an offspring solution from the 
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selected mother and father solutions. The offspring solution is generated from the combined 
distribution, where the combined distribution is the weighted sum of the parent’s distributions. 
The two procedures are controlled by the standard deviation, which is decreasing 
exponentially step by step. In our algorithm in the GA phase, an offspring not necessarily will 
be the member of the current population, and a parent not necessarily will die after mating. 
The reason is straightforward, because our algorithm uses very simple rule without explicit 
pheromone evaporation handling: If the current design is better than the worst solution of the 
current population than the worst one will be replaced by the better one.  
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Figure 1. Random selection 

 
ANGEL has only three "tunable" parameters{ } IG P ,, , where P  is the size of the 

population,G  is the number of generations, I  is the maximal number of local search 
iterations ( )1000 ≤≤ I , and an additional parameter pair { }SS ,  which defines a 
exponentially decreasing multiplier in the function of generation g , { }Gg ,,, K21 ∈ : 
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The parameter pair { }SS ,  can be kept “frozen” in the algorithm: 
 

 { } { }010 01 SS .,., =  (8) 
 

which means, that ANGEL is practically a “tuning-free” algorithm. 
The monotonically decreasing standard deviation function for each design variable can be 

defined in the following way: 



KOLMOGOROV-SMIRNOV TEST TO TACKLE FAIR... 
 

 

141 

 

 ( ) ( ),S ii
g
i XXgS −∗= { }G21 g ,,, K∈ { }N21 i ,,, K∈  (9) 
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Figure 2. Random perturbation 
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Figure 3. Random combination 

 
 

3. THE TEST EXAMPLE 
 

In this section, we present computational results for the very popular ten-bar truss weight 
minimization problem with size variables and displacement and stress constraints for the first 
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load case (see Figure 4). Table 1 presents the input parameters, and Tables 2-4 satisfy the 
usual solution presentation requirements of structural engineering, but from statistical point of 
view the presentation is meaningless, therefore unable to characterize the real progress in this 
area. 
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Figure 4. The benchmark-example 

 
Table 1. The initial data of the ten-bar truss benchmark-example 

Design variables [ ]35.0  10Ai ,.∈  )( 2in ; { }1021i ,...,,∈  

Stress constraints 
ksi)  25(   MPa4172i ±±= .σ ; 

{ }1021i ,,, K∈  Design 
constraints 

Deflection 
constraints 

)in 2(  cm 5.08u j ±±= ; { }821j ,,, K∈  

Nodes X Y 

2 − kips) (-100 kN37445.−  Load 

4 − kips) (-100 kN37445.−  

Elasticity modulus ksi) 10(1.0 Pa M108956E 44 ××= .  Material 
properties Density ). 33 lb/in  (0.1 N/cm 02720=ρ  

 
The following important impressions can be concluded of the formerly obtained results 

presented Tables 2-5. Independently from the totally different solution strategies, the results 
are more or less the same.  

Table 2. Comparison results of the ten-bar truss benchmark-example 
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Design 
variables 

Reference 
[10] 

Reference 
[11] 

Reference 
[12] 

Reference 
[13] 

Reference 
[14] 

Reference 
[15] 

1A  30.420 33.432 30.500 30.670 30.730 29,226 

2A  0.128 0.100 0.100 0.100 0.100 0,100 

3A  23.410 24.260 23.290 23.760 23.930 24,182 

4A  14.910 14.260 15.430 14.590 14.733 14,947 

5A  0.101 0.100 0.100 0.100 0.100 0,100 

6A  0.101 0.100 0.210 0.100 0.100 0,395 

7A  8.696 8.388 7.649 8.578 8.542 7,496 

8A  21.084 20.740 20.980 21.070 20.950 21,925 

9A  21.077 19.690 21.820 20.960 21.840 21,291 

10A  0.186 0.100 0.100 0.100 0.100 0,100 

][lbW  5084.90 5089.00 5080.00 5076.85 5076.70 5069.09 
 

Table 3. Comparison results of the ten-bar truss benchmark-example 

Design 
variables 

Reference 
[16] 

Reference 
[17] 

Reference 
[18] 

Reference 
[19] 

Reference 
[20] 

Reference 
[21] 

1A  30.980 30.031 30.561 30.704 30.598 30.520 

2A  0.100 0.100 0.100 0.100 0.100 0.100 

3A  24.170 23.274 23.170 23.167 23.171 23.200 

4A  14.810 15.286 15.112 15.183 15.196 15.220 

5A  0.100 0.100 0.100 0.100 0.100 0.100 

6A  0.406 0.557 0.549 0.551 0.541 0.551 

7A  7.547 7.468 7.470 7.460 7.463 7.457 

8A  21.050 21.198 21.099 20.978 21.035 21.040 

9A  20.940 21.618 21.527 21.508 21.518 21.530 

10A  0.100 0.100 0.100 0.100 0.100 0.100 

][lbW  5066.98 5061.60 5060.92 5060.92 5060.90 5060.80 

 
According to the stochastic nature of the solution searching algorithms, the presented 

solutions are random variable values. In other words, probably we see the first (best) elements 
from a set of ordered samples, but apart from this we know nothing about the samples 
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(sample size, sample elements, appropriate statistics etc.). 
 

Table 4. Comparison results of the ten-bar truss benchmark-example 

Design 
variables 

Reference 
[22] 

Reference 
[23] 

Reference 
[24] 

Reference 
[25] 

Reference 
[26] 

Reference 
[27] 

1A  30.150 30.307 30.314 31.280 32.966 30,440 

2A  0.102 0.100 0.100 0.100 0.100 0,100 

3A  22.710 23.434 23.261 24.650 22.799 21,790 

4A  15.270 15.505 15.225 15.390 14.146 14,260 

5A  0.102 0.100 0.100 0.100 0.100 0,100 

6A  0.544 0.524 0.550 0.100 0.739 0,451 

7A  7.541 7.437 7.484 7.900 6381 7,628 

8A  21.560 21.079 20.920 21.530 20,912 21,630 

9A  21.450 21.229 21.612 19.070 20,978 21,360 

10A  0.100 0.100 0.100 0.100 0,100 0,100 

][lbW  5057.88 5056.56 5055.30 5052.00 5013.24 4987.00 
 
According to the presented information, the "which is the best?" question meaningless, so 

to announce the "winner" when the selection process is based on the order of the first random 
elements of unknown ordered random sets is unfair and baseless (for example imagine a best 
drug selection procedure with similar "methodology"). 

Very interesting to see, that sometimes a pure stochastic method without gradient-based 
local search is able to rich a size border. There is only one acceptable reason for this statistical 
nonsense: there is a "hidden" rounding algorithm in the approach activated when the solution 
is near to a border. 

There another problem which is connected to the requirement of fair comparison, and it is 
the quality of the solutions. In the function of the applied structural model (for example: linear 
or nonlinear) and the feasibility handling process (rigorous or compliant), a solution which is 
feasible in one approach, may be more or less unfeasible in another one (see Table 5). 

When we use stochastic methods to get "good" but naturally random solutions, we have to 
use statistical methods to compare the efficiency of the different approaches, analyze a given 
method, or prove the success of an improvement or a "golden number" setting within a given 
approach. The key term here is the following: significant difference! 

The selection of the appropriate methodology for the statistical comparison is a challenging 
but sometimes frustrating "problems in the problem". 

 
Table 5. Comparison results of the ten-bar truss benchmark-example 

Reference ][lbWApp  ][lbWEff  Non-linear model Linear model 
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][max inu  [%]maxµ  ][max inu  [%]maxµ  
[10] 5089.00 5091.57 0 -1.99844 0 0 
[11] 5084.90 5084.81 0 -1.99860 0 0 
[12] 5080.00 5080.04 0 -1.99997 0 0 
[13] 5076.85 5077.15 0 -1.99989 0 0 
[14] 5076.66 5127.62 0 -1.98233 0 0 
[15] 5069.09 5069.09 0.03100 -2.00000 0 0.03100 
[16] 5066.98 5058.34 1.00889 -1.99982 0 1.00889 
[17] 5061.60 5061.66 0.72248 -1.99999 0 0.72248 
[18] 5060.92 5060.92 1.02775 -2.00000 0.02917 1.02775 
[19] 5060.92 5060.91 1.04748 -2.00000 0.04417 1.04748 
[20] 5060.90 5060.90 1.04763 -2.00000 0.04552 1.04763 
[21] 5060.80 5060.93 1.06041 -1.99996 0.05660 1.06041 
[22] 5057.88 5058.34 1.00889 -2.00181 0.09072 1.00889 
[23] 5056.56 5056.59 1.05256 -2.00198 0.09922 1.05256 
[24] 5055.30 5055.29 0.00961 -2.00284 0.14222 0.00961 
[25] 5052.00 5052.63 0.92375 -2.01949 0.97431 0.92375 
[26] 5013.24 5013.24 26.65840 -2.01312 25.20260 26.65840 
[27] 4987.00 4999.22 1.33365 -2.02798 1.39896 1.33365 

 
The first problem connected to the statistical methodology is well-known: we have to 

decide, whether a parametric or nonparametric approach would be the most appropriate in the 
given case. A "normal" parametric test, for example, may give a totally misleading "winner 
list" when the normality assumption is invalid. 

The second very important methodological problem is connected to the sample size, 
because in the structural optimization the implicit function evaluation is time consuming (we 
have to solve the equilibrium equation system in every investigated point): therefore, we have 
to choose a small-sample or large-sample oriented approach according to the sample size. It is 
well-known that when the sample size is small, an extremely good but hardly reproducible 
solution may be statistically meaningless (the play of nature), but when the sample size is 
large, a small but statistically significant difference between solutions may be a good indicator 
of the real difference between methods. 

 
 

4. THE COMPARISON STUDY 
 

In this section, according to our fundamentally methodological point of view we present a 
simple statistical comparison example for the ten-bar truss problem which can help to 
understand the fundamental statistical problems connected to the fair comparison. The 
searching history and a "spider net" like visualization for BF, ANGE, and ANGEL are shown 
in Figures 5-10, and the ordered samples are presented in Table 6. 
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 W = [ 6194.976 , 6954.562 ]
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Figure 5. BF searching history 
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Figure 6. BF spider net 
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 W = [ 5550.206 , 5909.119 ]
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Figure 7. ANGE searching history 
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Figure 8. ANGE spider net 
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 W = [ 5064.049 , 5075.631 ]

1 1000
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Figure 9. ANGEL searching history 
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Figure 10. ANGEL spider net 
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Table 6. Ordered samples of ten-bar truss 

 ][lbW  

Order BFS ANGE ANGEL 
1 6194.976 5550.206 5064.049 
2 6210.553 5635.219 5064.265 
3 6289.081 5673.552 5065.144 
4 6295.906 5675.658 5065.644 
5 6310.756 5678.372 5065.884 
6 6351.857 5682.852 5066.257 
7 6358.005 5694.187 5067.502 
8 6383.326 5694.375 5067.983 
9 6413.217 5695.173 5069.063 
10 6428.944 5710.769 5069.901 
11 6440.013 5750.338 5070.327 
12 6447.865 5753.376 5070.590 
13 6454.067 5763.015 5071.511 
14 6474.522 5764.65 5071.636 
15 6480.684 5772.142 5071.678 
16 6486.377 5774.454 5071.844 
17 6520.239 5788.412 5072.885 
18 6521.964 5794.04 5072.910 
19 6523.422 5797.794 5073.138 
20 6552.367 5816.947 5073.252 
21 6556.865 5823.144 5073.417 
22 6608.343 5839.429 5073.468 
23 6633.204 5853.423 5073.545 
24 6667.815 5854.036 5073.807 
25 6679.523 5864.765 5074.106 
26 6683.527 5869.855 5074.503 
27 6754.265 5870.178 5074.613 
28 6780.186 5874.165 5075.152 
29 6869.330 5888.304 5075.290 
30 6954.562 5896.135 5075.631 

][min lbW  6194.976 5550.206 5064.049 
][max lbW  6954.562 5909.119 5075.631 
][lbrangeW  759.586 358.913 11.582 
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From statistical point of view, the minimal requirement of the fair comparison is a "small-
sample" for each investigated approach and a "nonparametric-small-sample-test" according to 
the fundamental elements of the experimental design theory and the very slowly changing 
structural optimization presentation standard. By definition "small-sample" means 10-30 
independent runs, and as a "nonparametric-small-sample-test" the nonparametric 
Kolmogorov-Smirnov test (NKST) can be applied to avoid the additional methodological 
problems.  

We assume, that we would like to test the effect of the local search (L) in ANGE(L) with 
the following two settings: 

 
 1. { } { }0   ,10 ,1000  , , =IGP , 
 2. { } { }10 ,10 ,100    , , =IGP . 
 
We ran every model 30 times with "frozen" { } { }010 01 SS .,., =  and % 0010.≤λ  values. 

According to the experimental settings in each case 00010.  evaluations is allowed but in 
different distributions.  

We have to note, that setting 10I =  not necessarily means always 10 iterations. Firstly, we 
present the "best" solutions when we tried to solve the problem with brutal-force-search (BF) 
algorithm generating 000101010100 .=∗∗ random designs using a uniform random number 
generator to generate the size variables. NKST for two independent samples from a 
continuous field tests: ( ) ( )xFxF :H 210 = , that is, the two samples are from populations with 
the same distribution function. 

The alternative hypothesis is the following: ( ) ( )xFxF :H 21A ≠  for some x . In our example 
the result of NKST is trivial: the linearized local search procedure (L) significantly decreases 
the weight of the structure: ( )0.000SIG 8733Z == . . 

 
 

5. CONCLUSION 
 

In this paper we presented a statistically correct methodology for to compare the efficiency of 
the different stochastic approaches developed to generate good quality solutions within 
reasonable time in structural optimization. When we use statistical methods in the structural 
optimization (namely heuristics or meta-heuristics with several tunable parameters and 
starting seeds), then the usual presentation practice: "one problem - one result" is extremely 
far from the fair comparison. From statistical point of view, the minimal requirement is a so-
called "nonparametric small-sample test" according to the fundamental elements of the theory 
of the experimental design and evaluation and the protocol used in the drug development 
processes. The viability and efficiency of the proposed statistically correct methodology is 
demonstrated using the well-known ten-bar example on a set of the heuristics from the brutal-
force-search up to the most sophisticated hybrid approaches. 
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