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ABSTRACT 
 

This paper is concerned with application and evaluation of ant colony optimization (ACO) 
method to practical structural optimization problems. In particular, a size optimum design of 
pin-jointed truss structures is considered with ACO such that the members are chosen from 
ready sections for minimum weight design. The application of the algorithm is demonstrated 
using two design examples with practical design considerations. Both examples are formulated 
according to provisions of ASD-AISC (Allowable Stress Design Code of American Institute of 
Steel Institution) specification. The results obtained are used to discuss the computational 
characteristics of ACO for optimum design of truss type structures.  
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1. INTRODUCTION 
 

Structural optimization is a highly attractive research field positioned in the intersection of 
continuous and discrete (combinatorial) optimizations. A group of receptive techniques 
referred to as stochastic search methods have been contemplated to deal with these kinds of 
optimization problems borrowing their characteristics from biological methodologies and 
other natural phenomena. It is generally accepted that stochastic approaches can handle 
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structural optimization problems more efficiently and easily than the deterministic 
algorithms. In addition to robustness with respect to the growth of problem size, other 
significant advantages of these methods are related to their relative simplicity and suitability 
for problems where the implementation of the optimization process is complicated by 
complexity and differentiability of design domain [1]. These heuristic algorithms are now 
becoming very popular in many disciplines of science and engineering. The fundamental of 
these algorithms are based on analogies with natural processes [2-7]. A detailed review of 
these algorithms as well as their applications in optimum structural design is carried out by 
Saka [8] and Hasançebi et al. [9,10].  

The ant colony optimization (ACO) was originated by Dorigo et al [11-13] and the 
initial algorithm for this method was developed by Dorigo and Gambardella [12, 13]. In 
their study, the travelling salesman benchmark problem is used for a numerical 
implementation and verification of the technique. Camp and Bichon [14] first developed 
a design algorithm with ACO to size steel space trusses for minimum weight subject to 
stress and deflection limitations. Later, they extended this work to optimize rigid steel 
frames in Camp et al. [15]. Kaveh and Shojaee [16] also presented an ACO integrated 
solution algorithm for discrete optimum design of steel frames with design constraints 
consisting of combined bending and compression, combined bending and tension and 
deflection limitations. In some studies in the literature, the attempts are made to 
accelerate performance of ACO by hybridizing it with another meta-heuristic technique, 
namely particle swarm method, Refs. [17-19].  In Aydoğdu and Saka [20], ACO is 
employed to seek optimum design of the three dimensional irregular steel frames, taking 
into account warping deformations of thin walled sections.  

This study is concerned with the application and evaluation of ACO for structural 
optimization problems. The minimum weight design of pin-jointed steel trusses with practical 
design considerations is particularly dealt with using two variants of ACO algorithm. These 
two variants are identical to each other in terms of algorithmic outline and computational steps 
except for implementation of global pheromone update scheme. In the first variant, global 
pheromone update is implemented in accordance with original development of the technique as 
proposed by Dorigo et al. [11-13]. The second variant, on the other hand, corresponds to the 
enhancement of the method by Camp et al. [14-15], where a selected number of ants ranked in 
terms of objective function values are used to update the pheromone levels on the paths and 
thus to bias the search towards favourable regions. The applications of the ACO algorithms are 
demonstrated using two design examples. These examples are a 160-bar pyramid and a 693-
bar braced barrel vault as space steel truss. In both examples the trusses are sized for minimum 
weight considering stress, stability and displacement limitations according to the provisions of 
ASD-AISC [21] specification. The results obtained in these examples are used to compare 
numerical performances of the ACO algorithms. 

 
 

2. MATHEMATICAL FORMULATION OF STRUCTURAL OPTIMIZATION 
PROBLEM 

 
The design of steel truss structures requires the selection of members from a standard steel 
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pipe section table such that the structure satisfies the strength and serviceability 
requirements specified by a chosen code of practice, while the economy is observed in the 
overall or material cost of the structure. For a pin-jointed space steel truss which consists of 
Nm members grouped into Nd design variables, this problem can be formulated as follows. 

 
2.1. Objective Function 

Find a vector of integer values I (Eq. (1)) representing the sequence numbers of standard 
sections in a given section table 
 IT = 1 2[ , , ..., ]

dNI I I
 

(1) 

 
to generate a vector of cross-sectional areas A for Nm members of the truss 

 
 AT = 1 2[ , ,..., ]

mNA A A
 

(2) 

 
such that A minimizes the objective function 

 

 1
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m m m
m

W L A
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(3) 

 
where W refers to the weight of the dome; ρm, Am, Lm are cross-sectional area, length and 
unit weight of the m-th truss member, respectively. 

 
2.2. Design Constraints 

The structural behavioral and performance limitations of pin-jointed space steel truss can be 
formulated as follows: 
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(6) 

 
In Eqs. (4-6), the functions gm , sm and δj,k are referred to as constraints being bounds on 

stresses, slenderness ratios and displacements, respectively; σm and (σm)all are the computed 
and allowable axial stresses for the m-the member, respectively; λm and (λm)all are the 
slenderness ratio and its upper limit for m-th member, respectively; Nj is the total number of 
joints; and finally dj,k , and (dj,k )all, are the displacements computed in the k-th direction of 
the j-th joint and its permissible value, respectively. In the present study, these limitations 
are implemented according to ASD-AISC [21] code provisions. 
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Accordingly, the maximum slenderness ratio is limited to 300 for tension members, and it 
is taken as 200 for compression members. Hence, the slenderness related design constraints 
are formulated as follows: 

 

 

300m m
m

m

K L

r
   (for tension members) 

200m m
m

m

K L

r
    (for compression members)

 (7) 

 
where, Km is the effective length factor of m-th member (Km=1 for all members), and rm is its 
minimum radii of gyration. 

The allowable tensile stresses for tension members are calculated as in Eq. (8): 
 

 (σt)all=0.60Fy

(σt)all=0.50Fu
 (8) 

 
where Fy and Fu stand for the yield and ultimate tensile strengths, and the smaller of the two 
formulas is considered to be the upper level of axial stress for a tension member. 

The allowable stress limits for compression members are calculated depending on two 
possible failure modes of the members known as elastic and inelastic buckling, Eqs. (9-11). 
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In Eqs. (9-11), E is the modulus of elasticity, and Cc is referred to as the critical 

slenderness ratio parameter. For a member with λm< Cc , it is assumed that the member 
buckles inelastically, and its allowable compression stress is computed according to Eq. 
(10). Otherwise (λm >Cc), elastic buckling of the member takes place, in which case the 
allowable compression stress is computed as to Eq. (11). 

 
 

3. ANT COLONY OPTIMIZATION  
 

Ant colony optimization technique is inspired from the way that ant colonies find the 
shortest route between the food source and their nest. The biologists studied extensively for 



ANT COLONY SEARCH METHOD IN PRACTICAL... 
 

 

95

a long time the way in which ants manage collectively to solve difficult problems in a 
natural way which is too complex for a single individual. Ants being completely blind 
individuals can successfully discover as a colony the shortest path between their nest and the 
food source. They manage this through their typical characteristic of employing a volatile 
substance called pheromones. They perceive these substances through very sensitive 
receivers located in their antennae. The ants deposit pheromones on the ground when they 
travel which is used as a trail by other ants in the colony. When there is choice of selection 
for an ant between two paths it selects the one where the concentration of pheromone is 
greater. Since the shorter trail will be reinforced more than the long one after a while a great 
majority of ants in the colony will travel on this route. The computational steps of the 
technique are outlined as follows: 

 
Step 1. Initialization of pheromones (Trails):  

Given that a profile list with Ns steel sections is used, each design variable can assume Ns 
number of different values (paths). The term ‘‘path” is used synonymously with standard 
steel section for a variable in ACO to implicate the choice of an ant. Each path is 
characterized by a pheromone level, indicating the suitability of the path (discrete section) 
for the variable. If there are a total of Nd design variables, the pheromone levels deposited in 
all paths for these variables are stored in a matrix called a trail matrix T, Eq. (12). It is a Ns x 
Nd matrix with a typical element Tji indicating pheromone level in the j-th path for the i-th 
design variable. Consequently, each column vector in T represents the entire set of 
pheromones accumulated in all Ns paths for a design variable. 

 

  (12) 

 
The trail matrix is initialized such that all the elements of the matrix are assigned an 

initial value of Tji
(0)=1/Wmin , where Wmin is the minimum weight of the structure resulting 

from assigning the smallest steel section (indicated by sequence number Imin) to all members 
of the structure. 

 
Step 2. Selection probabilities:  

Once the trail matrix is constructed, the selection probabilities of the paths are calculated 
next using Eq. (13). 
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(13) 

 
In Eq. (13), pji indicates the selection probability of j-th path for the i-th design variable. 

This probability is a function of the ratio of the path’s pheromone level (Tji) to the sum of all 
others’ for the i-th design variable. It follows that those paths with higher pheromone levels 
probabilistically have a greater chance for being selected. The visibility coefficient for the 
jth section (υj) in this Eq. is defined as follows: 

 

1
j

jA
 

 

(14) 

 
where Aj represents cross-sectional area of the j-th section. As seen from Eq. (14), the 
visibility is inversely proportional to the cross-sectional area, increasing selection 
probabilities of paths with small sections to some extent in order to bias the search towards 
these paths. Finally, β is a constant parameter used to adjust the relative importance between 
the visibility and the trail. 

 
Step 3. Constructing a colony of ants:  

An ant colony consists of a predefined number of ants (μ, colony size), each of which 
represents a potential solution to a problem of interest. Each ant within the colony is 
constructed probabilistically based on paths’ selection probabilities for each design variable. 
Selection process is carried out such that each design variable is selected by all ants before 
proceeding to the other. Whenever a choice is performed by an ant for a design variable, the 
intensity of pheromone on the selected path (Tji) is somewhat lowered using the following 
local update equation: 

 
.new old

ji jiT T
 

(15) 

 
where ξ is the local update parameter assigned to a suitable value between 0 and 1. The path 
probabilities are recalculated (updated) accordingly, and the forthcoming ant makes its 
choice under updated values. As anticipated, the rationale behind local update is to 
encourage the subsequent ants to choose different sections, and thus to produce dissimilar 
solutions for a more exhaustive search. Since pheromone levels and probabilities at any time 
depend on earlier selections made, when an ant makes its own choice becomes important. 
An order of selection is determined anew for all μ ants at random prior to selection of each 
variable. The construction of colony is completed when all design variables are selected for 
all the ants in the colony.  

 
Step 4. Evaluation of colony:  

The structure is analyzed for the designs characterized by μ ants, and an objective function 
value is assigned to each ant. The ants evaluated are ranked by their objective function 
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values, and the elitist ant is updated. Elitist ant is the best feasible ant located so far since the 
beginning of the process. 

 
Step 5. Global pheromone update:  

A global pheromone update scheme is implemented next to add pheromones to the paths 
selected by the ants. In the original ACO algorithm developed by Dorigo [22], this scheme is 
formulated in Eq. (16). 

 1

(1 ). ( )new old
ji r ji ji k

k

T e T T




   
 

(16) 

 
In Eq. (16), er is a constant referred to as evaporation rate, and (ΔTji)k defined in Eq. (17) 

is the amount of pheromone added to path ji by the k-th ant in the colony, where φk 
represents the objective function value of this ant. 

 

 (ΔTji)k=
1/ ,    if the  selected by -  ant

0,          otherwise
k ij k th




  (17) 

 

In fact, Eq. (16) consists of two terms; an evaporation term and an accumulation term. 
The evaporation term is applied to all the paths Tji to simulate the nature such that in nature 
the pheromone is subject to evaporation over time. This term helps prevent an early 
convergence of the algorithm by implementing a positive form of forgetting. The second 
term accounts for the accumulation of pheromones on selected paths. Paths that are not 
selected by an ant receive no pheromone update. 

A number of extensions of the original global pheromone update scheme have been 
proposed in the literature. One of such extensions, called the ranked ant system, was 
formulated by Camp et al. [15], where the elitist ant and a selected number of λr top ranked 
ants in an iteration are used for pheromone update to bias the search towards favorable 
regions, Eq. (18). 
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(18) 

 

In Eq. (18), ΔTji
+ refers to the pheromone accumulation due to the elitist ant, and rk is the 

rank of the ant (between 1 and λr). 
 

Step 6. Termination:  

The steps 2 through 5 define a single iteration of the algorithm. The process is repeated for a 
predefined number of iterations Nite. 

 
 

4. DESIGN EXAMPLES 
 

Two design examples are considered for numerical applications. The first example is a 160-
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bar space steel pyramid and the second one is 693-bar braced barrel vault. They are designed 
for minimum weight with cross-sectional areas of the members being the design variables 
using two algorithmic variants of ACO technique. In the first variant referred to as ACO1, 
global pheromone update is implemented in accordance with original development of the 
technique as proposed by Dorigo [22]. The second variant, on the other hand, corresponds to 
the enhancement of the method by Camp et al. [14-15]. In both design examples, the 
following material properties of the steel are used: modulus of elasticity E = 29,000 ksi 
(203,893.6 MPa) and yield stress Fy =36 ksi (253.1 MPa). 

 
4.1. Example 1; 160-Bar Space Steel Pyramid  

Figure 1 shows 3-D, front, and plan views of a 160-bar space steel pyramid with a square 
base diameter of 16m (52.5ft) along both x and y axis and a total height of 8m (26.25ft). The 
structure consists of 55 joints and 160 members that are grouped into 7 independent size 
design variables. The grouping of members is shown in Figure 1-a. The size variables are to 
be selected from a database of 37 pipe (circular hollow) sections issued in ASD-AISC [21] 
standard section tables. The stress and stability limitations of the members are calculated 
according to the provisions of ASD-AISC [21], as explained in Section 2. The displacements 
of all nodes are limited to 4.45cm (1.75in) in any direction. For design purpose, a single load 
case is considered such that it consists of a vertical load of -8.53kN (-1.92kips) applied in 
the z-direction at all nodes of the pyramid.   
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7 77

 
a) 3-D view 
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b) Front view 

 
c) Plan view 

Figure 1. A 160-bar pyramid; a) 3-D view, b) Front view, c) Plan view 
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The pyramid is optimized for minimum weight using the standard (ACO1) and ranked 
(ACO2) ant colony optimization algorithms. In these runs, the algorithm control 
parameters are chosen based on extensive numerical experimentation as well as 
recommendations of the former studies [9, 10, 14, 15], as follows: =50, =0.2 , er=0.5, 
r =25, min =0.90, and Nite =1000. Depending on probabilistic nature of the technique, 
the space steel pyramid is separately designed a number of times with each ACO 
algorithm, and the best performance is considered. The ACO1 algorithm relatively 
performed poorly and located a final design weight of 6338.31 lb (2875.01 kg). The 
ACO2 algorithm yielded a better design that weighs 6211.65 lb (2817.56 kg) only. These 
designs are tabulated in Table 1 with section designations attained for each member 
group. In all the cases a total of approximately 50,000 function evaluations (structural 
analyses) were performed to reach the final designs reported above. In Figure 2, the 
variation of feasible best design obtained so far during the search is plotted against the 
number of function evaluations for the two algorithms mentioned above. 

 
 Table 1. Final best designs of 160-bar space steel pyramid obtained with ACO1 and ACO2 

            ACO2             ACO1 
Size variables 

Ready Section Area, in2 (cm2) Ready section Area, in2 (cm2) 

1 P2 1.07   (6.90) P2 1.07   (6.90) 

2 P1.25 0.669 (4.32) P1.25 0.669 (4.32) 

3 P2 1.07   (6.90) P2 1.07   (6.90) 

4 P1.25 0.669 (4.32) P1.5 0.799 (5.16) 

5 P2 1.07   (6.90) P2 1.07   (6.90) 

6 P1.25 0.669 (4.32) P1.5 0.669 (4.32) 

7 PX2 1.48   (9.55) P2.5 1.70 (10.97) 

Weight 6211.65 lb (2817.56 kg) 6338.31 lb (2875.01 kg) 

 
4.2. Example 2; 693-Bar Braced Barrel Vault 

The second example shown in Figure 3 is a three dimensional braced barrel vault [23] 
consisting of 259 joints and 693 members that are grouped into 23 independent size 
variables considering the symmetry of the braced barrel vault about centerline. The member 
grouping scheme is given in Figure 3-a. The dimensions of the barrel vault are shown in the 
Figure 3-b and c. It is assumed that the barrel vault is subjected to a uniform dead load (DL) 
pressure of 35 kg/m2, a positive wind load (WL) pressure of 160 kg/m2, and a negative wind 
load (WL) pressure of 240 kg/m2. For design purposes, these loads are combined under two 
separate load cases as follows: (i) 1.5DL  1.5WL = 1.5(35 +160) =  292.5 kg/m2 (2.87 
kN/m2) and (ii) 1.5DL – 1.5WL = 1.5(35 – 240) = –307.5 kg/m2 (–3.00 kN/m2), along z-
direction. The displacements of all joints in any direction are restricted to a maximum value 
of 0.254 cm (0.1 in). The strength and stability requirements of steel members are imposed 
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according to ASD-AISC [21]. The structural members are adopted from a list of 37 circular 
hollow sections issued in ASD-AISC [21] design specification.  

 

 

Figure 2. The variation of feasible best design in ACO1 and ACO2 algorithms for 160-bar space 
steel pyramid 
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b) Front view 

 

22.9 m (75.13 ft)

1.5 m 
(4.92 

ft) 

1.5 m 
(4.92 

ft) 

1.5 m 
(4.92 

ft) 

1.5 m 
(4.92 

ft) 

1.5 m 
(4.92 

ft) 

1.5 m 
(4.92 

ft) 

9 m 
(29.53 ft) 

  
c) Plan view 

Figure 3. A 693-bar braced barrel vault; a) 3-D view, b) Front view, c) Plan view 
 

Again the ACO1 and ACO2 algorithms are employed to minimize the weight of the 
braced barrel vault. Each algorithm is run a certain number of times independently, and only 
the best performances are considered. Once again the ACO1 algorithm exhibited a poor 
performance. The lack of convergence characteristics of this algorithm has guided the search 
towards a final design weight of 13379.19 lb (6068.69 kg) that is far from the optimum. A 
better solution to this problem was obtained with ACO2 with a design weight of 12133.47 lb 
(5503.65 kg) as tabulated in Table 2. Figure 4 displays the variation of feasible best design 
in the best runs of both of the ACO algorithms. 
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Table 2. Final best designs of the 693-bar braced barrel vault obtained with sACO, cACO, HSO 
and GAs methods 

ACO2 ACO1 Size 
variables Ready Section Area, in2 (cm2) Ready Section Area, in2 (cm2) 

1 P4 3.17 (20.45) P3 3.02 (19.48) 
2 P1 0.494 (3.18) PX1.5 1.07   (6.90) 
3 P1.25 0.669 (4.32) P1 0.494 (3.18) 
4 PX1.25 0.881 (5.68) PX1.25 0.881 (5.68) 
5 P.75 0.333 (2.15) P1.25 0.669 (4.32) 
6 P5 4.3   (27.74) PX4 4.41 (28.45) 
7 P1 0.669 (4.32) P1.25 0.669 (4.32) 
8 PX1 0.881 (5.68) PX1.5 1.07   (6.90) 
9 P3 3.68 (23.74) PXX2 2.66 (17.16) 
10 P1 0.669 (4.32) PX1.25 0.881 (5.68) 
11 P1.25 0.433 (2.79) P1 0.494 (3.18) 
12 P1.5 0.799 (5.16) PX1 0.639 (4.12) 
13 P1.5 0.799 (5.16) PX1.25 0.881 (5.68) 
14 P1 0.669 (4.32) PX2 1.48   (9.55) 
15 PX.75 0.433 (2.79) P.75 0.333 (2.15) 
16 P1.5 0.799 (5.16) P1.5 0.799 (5.16) 
17 PX2 1.48   (9.55) P2.5 1.70 (10.97) 
18 P1.25 0.669 (4.32) P1.25 0.669 (4.32) 
19 P1 0.669 (4.32) P1.5 0.799 (5.16) 
20 P.75 0.333 (2.15) PX1.5 1.07   (6.90) 
21 PX2.5 2.25 (14.52) P4 3.17 (20.45) 
22 P1.5 0.799 (5.16) P1 0.494 (3.18) 
23 P.75 0.333 (2.15) PX.75 0.433 (2.79) 

Weight 12133.47 lb (5503.65 kg) 13379.19 lb (6068.69 kg) 

 

Figure 4. The variation of feasible best design in ACO1 and ACO2 algorithms for 693-bar 
braced barrel vault 
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5. CONCLUSIONS 
 

This study is concentrated on application and evaluation of the two variants of ACO 
algorithm in practical structural optimization problems. The two variants of ACO employed 
in the study are identical to each other except for global pheromone update scheme. In the 
so-called standard variant (ACO1), the pheromone levels on paths are updated considering 
all the ants in the colony. In the second variant (ACO2), only a selected number of 
promising ants are used to update the pheromone levels so that the search is directed to those 
paths adopted by successful ants. The two algorithms have been tested and compared on two 
design examples (Figures 1 and 3) chosen from optimum design of real-life large scale steel 
trusses. The final designs obtained with ACO2 are lower than those of ACO1 as much as 2 
% in the first example and 9.31 % in the second example. A comparison of optimum designs 
in Tables 1 and 2 reveals that ACO2 is relatively more effective in finding better solutions to 
large-scale structures as compared to ACO1. A track of pheromone levels on paths in ACO1 
indicates that pheromones are concentrated on a group of paths for a design variable soon 
after the optimization process has started, whereas the other paths tend to go towards zero 
pheromone levels with no chance of being selected in the following iterations. The problem 
is that the group of paths on which the pheromone is concentrated may not incorporate the 
best path that would lead to the optimum design in the end of the process. What is more, the 
search is confined to a small subset of design space because of restricted mobility in the 
values of design variables, resulting in solutions far from the true optimum. The problem of 
pheromone concentration is also observed for ACO2, however this time the paths on which 
the pheromone levels are concentrated are stronger because of inclusion of distinguished 
ants for pheromone update. A more efficient search can be conducted with ACO2 using 
superior paths, yet again in a prematurely limited design space. It is concluded that ACO is a 
promising technique and offers some computational advantages with respect to more 
traditional techniques. Yet, the technique entails new enhancements to generate an 
automated process for online parameter adjustment or any strategy to avoid pheromone 
concentration.     
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