Search published articles


Showing 3 results for Goodarzimehr

S. Talatahari, V. Goodarzimehr, S. Shojaee,
Volume 11, Issue 2 (5-2021)
Abstract

In this work, a new hybrid Symbiotic Organisms Search (SOS) algorithm introduced to design and optimize spatial and planar structures under structural constraints. The SOS algorithm is inspired by the interactive behavior between organisms to propagate in nature. But one of the disadvantages of the SOS algorithm is that due to its vast search space and a large number of organisms, it may trap in a local optimum. To fix this problem Harmony search (HS) algorithm, which has a high exploration and high exploitation, is applied as a complement to the SOS algorithm. The weight of the structures' elements is the objective function which minimized under displacement and stress constraints using finite element analysis. To prove the high capabilities of the new algorithm several spatial and planar benchmark truss structures, designed and optimized and the results have been compared with those of other researchers. The results show that the new algorithm has performed better in both exploitation and exploration than other meta-heuristic and mathematics methods.
V. Goodarzimehr, F. Salajegheh,
Volume 14, Issue 1 (1-2024)
Abstract

The analysis and design of high-rise structures is one of the challenges faced by researchers and engineers due to their nonlinear behavior and large displacements. The moment frame system is one of the resistant lateral load-bearing systems that are used to solve this problem and control the displacements in these structures. However, this type of structural system increases the construction costs of the project. Therefore, it is necessary to develop a new method that can optimize the weight of these structures. In this work, the weight of these significant structures is optimized by using one of the latest metaheuristic algorithms called special relativity search. The special relativity search algorithm is mainly developed for the optimization of continuous unconstrained problems. Therefore, a penalty function is used to prevent violence of the constraints of the problem, which are tension, displacement, and drift. Also, using an innovative technique to transform the discrete problem into a continuous one, the optimal design is carried out. To prove the applicability of the new method, three different problems are optimized, including an eight-story one-span, a fifteen-story three-span bending frame, and a twenty-four-story three-span moment frame. The weight of the structure is the objective function, which should be minimized to the lowest possible value without violating the constraints of the problem. The calculation of stress and displacements of the structure is done based on the regulations of AISC-LRFD requirements. To validate, the results of the proposed algorithm are compared with other advanced metaheuristic methods.
 
Dr. V. Goodarzimehr, Dr. N. Fanaie, Dr. S. Talatahari,
Volume 15, Issue 1 (1-2025)
Abstract

In this study, the Improved Material Generation Algorithm (IMGA) is proposed to optimize the shape and size of structures. The original Material Generation Algorithm (MGA) introduced an optimization model inspired by the high-level and fundamental characteristics of material chemistry, particularly the configuration of compounds and chemical reactions for generating new materials. MGA uses a Gaussian normal distribution to produce new combinations. To enhance MGA for adapting truss structures, a new technique called Random Chaotic (RC) is proposed. RC increases the speed of convergence and helps escape local optima. To validate the proposed method, several truss structures, including a 37-bar truss bridge, a 52-bar dome, a 72-bar truss, a 120-bar dome, and a 200-bar planar structure, are optimized under natural frequency constraints. Optimizing the shape and size of structures under natural frequency constraints is a significant challenge due to its complexity. Choosing the frequency as a constraint prevents resonance in the structure, which can lead to large deformations and structural failure. Reducing the vibration amplitude of the structure decreases tension and deflection. Consequently, the weight of the structure can be minimized while keeping the frequencies within the permissible range. To demonstrate the superiority of IMGA, its results are compared with those of other state-of-the-art metaheuristic methods. The results show that IMGA significantly improves both exploitation and exploration.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb