دوره 3، شماره 4 - ( 7-1392 )                   جلد 3 شماره 4 صفحات 693-673 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fattahi H, Shojaee S, Ebrahimi Farsangi M A. APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR THE ASSESSMENT OF DAMAGED ZONE AROUND UNDERGROUND SPACES. IJOCE 2013; 3 (4) :673-693
URL: http://ijoce.iust.ac.ir/article-1-156-fa.html
APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR THE ASSESSMENT OF DAMAGED ZONE AROUND UNDERGROUND SPACES. عنوان نشریه. 1392; 3 (4) :673-693

URL: http://ijoce.iust.ac.ir/article-1-156-fa.html


چکیده:   (18800 مشاهده)
The development of an excavation damaged zone (EDZ) around an underground excavation can change the physical, mechanical and hydraulic behaviors of the rock mass near an underground space. This might result in endangering safety, achievement of costs and excavation planed. This paper presents an approach to build a prediction model for the assessment of EDZ, based upon rock mass characteristics changed. Rock engineering systems (RES) was used as an appropriate method for choosing the best parameter that expresses the occurrence of EDZ. Modulus of deformation with the highest weight in the system was selected as the most effective changed parameter. The adaptive network-based fuzzy inference system (ANFIS) with modulus of deformation as input was used to build a prediction model for the assessment of EDZ. Three ANFIS models were implemented, grid partitioning (GP), subtractive clustering method (SCM) and fuzzy c-means clustering method (FCM). A comparison was made between these three models and the results show the superiority of the ANFIS-SCM model. Furthermore, a case study in a test gallery of the Gotvand dam, Iran was carried out to illustrate the capability of the ANFIS model defined.
متن کامل [PDF 1012 kb]   (6350 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1392/8/28 | پذیرش: 1392/8/28 | انتشار: 1392/8/28

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb