دوره 9، شماره 3 - ( 3-1398 )                   جلد 9 شماره 3 صفحات 499-523 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahrouzi M, Barzigar A, Rezazadeh D. STATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION. International Journal of Optimization in Civil Engineering. 2019; 9 (3) :499-523
URL: http://ijoce.iust.ac.ir/article-1-403-fa.html
STATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION. دانشگاه علم و صنعت ایران. 1398; 9 (3) :499-523

URL: http://ijoce.iust.ac.ir/article-1-403-fa.html


چکیده:   (1284 مشاهده)
Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimization as a powerful meta-heuristic with several engineering applications. Special combination of static and dynamic opposition-based operators are hybridized with CBO so that its performance is enhanced. The proposed OCBO is validated in a variety of benchmark test functions in addition to structural optimization and optimal clustering. According to the results, the proposed method of opposition-based learning has been quite effective in performance enhancement of parameter-less colliding bodies optimization.
متن کامل [PDF 393 kb]   (231 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: ۱۳۹۷/۱۲/۳ | پذیرش: ۱۳۹۷/۱۲/۳ | انتشار: ۱۳۹۷/۱۲/۳

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb