Volume 14, Issue 4 (10-2024)                   IJOCE 2024, 14(4): 573-593 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi-Nedushan B, Almaleeh A M. MATERIAL COST OPTIMIZATION OF ONE-WAY REINFORCED CONCRETE SLABS USING AN ELITIST GENETIC ALGORITHM: A SENSITIVITY ANALYSIS BASED ON ACI 318-19. IJOCE 2024; 14 (4) :573-593
URL: http://ijoce.iust.ac.ir/article-1-610-en.html
1- Department of Civil Engineering, Yazd University, Yazd, Iran
Abstract:   (2652 Views)
This study uses an elitist Genetic Algorithm (GA) to optimize material costs in one-way reinforced concrete slabs, adhering to ACI 318-19. A sensitivity analysis demonstrated the critical role of elitism in GA performance. Without elitism, the GA consistently failed to reach the target objective, with success rates often nearing zero across various crossover fractions. Incorporating elitism dramatically increased success rates, highlighting the importance of preserving high-performing individuals. With an optimal configuration of 0.3 crossover fraction and 0.45 elite percentage, a 92% success rate was achieved, finding a cost of 24.91 in 46 of 50 runs for a simply supported slab. This optimized design, compared to designs based on ACI 318-99 and ACI 318-08, yielded material cost savings of between 5.8% to 8.6% for simply supported, one-end continuous, both-ends continuous, and cantilevered slabs. The influence of slab dimensions on cost was evaluated across 64 scenarios, varying slab lengths from 5 to 20 feet for each support condition. Resulting cost versus slab length diagrams illustrate the economic benefits of GA optimization.
Full-Text [PDF 727 kb]   (1091 Downloads)    
Type of Study: Research | Subject: Applications
Received: 2024/10/4 | Accepted: 2024/11/22

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb