دوره 14، شماره 4 - ( 7-1403 )                   جلد 14 شماره 4 صفحات 663-647 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kaveh A, Khavaninzadeh N. NODAL ORDERING OF GRAPHS FOR WAVEFRONT OPTIMIZATION USING NEURAL NETWORK AND WATER STRIDER ALGORITHMS. IJOCE 2024; 14 (4) :647-663
URL: http://ijoce.iust.ac.ir/article-1-613-fa.html
NODAL ORDERING OF GRAPHS FOR WAVEFRONT OPTIMIZATION USING NEURAL NETWORK AND WATER STRIDER ALGORITHMS. عنوان نشریه. 1403; 14 (4) :647-663

URL: http://ijoce.iust.ac.ir/article-1-613-fa.html


چکیده:   (705 مشاهده)
In this paper, a neural network is trained for optimal nodal ordering of graphs to obtain a small wavefront using soft computing. A preference function consists of six inputs that can be seen as a generalization of Sloan's function. These six inputs represent the different connection characteristics of graph models. This research is done with the aim of comparing Sloan's theoretical numbering method with Sloan's developed method with neural networks and WSA meta-heuristic algorithm. Unlike the Sloan algorithm, which uses two fixed coefficients, six coefficients are used here, based on the evaluation of artificial neural networks. The weight of networks is obtained using Water Strider algorithm. Examples are included to demonstrate the performance of the present hybrid method.
متن کامل [PDF 926 kb]   (354 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal analysis
دریافت: 1403/8/24 | پذیرش: 1403/10/8 | انتشار: 1403/7/25

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb