دوره 15، شماره 2 - ( 1-1404 )                   جلد 15 شماره 2 صفحات 201-181 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ilchi Ghazaan M, Sharifi M. A TWO-PHASE METAMODEL-DRIVEN APPROACH FOR TOPOLOGY AND SIZE OPTIMIZATION OF TRUSS STRUCTURES. IJOCE 2025; 15 (2) :181-201
URL: http://ijoce.iust.ac.ir/article-1-630-fa.html
A TWO-PHASE METAMODEL-DRIVEN APPROACH FOR TOPOLOGY AND SIZE OPTIMIZATION OF TRUSS STRUCTURES. عنوان نشریه. 1404; 15 (2) :181-201

URL: http://ijoce.iust.ac.ir/article-1-630-fa.html


چکیده:   (151 مشاهده)
This paper introduces a novel two-phase metamodel-driven methodology for the simultaneous topology and size optimization of truss structures. The approach addresses critical limitations in computational efficiency and solution quality. The framework integrates the Flexible Stochastic Gradient Optimizer (FSGO) with adaptive sampling and machine learning to minimize the number of structural analyses (NSAs), while achieving lighter, high-performance designs. In Phase One, FSGO employs a dual global-local search strategy governed by Extensive Constraints (EC), a dynamic constraint relaxation mechanism to balance exploration of unconventional topologies and exploitation of optimal member sizes. By creating adaptive margins around design constraints, EC enables broader exploration of the design space while ensuring feasibility. Phase Two focuses on precision size optimization, leveraging pruned metamodels trained on critical regions of the design space to refine cross-sectional areas for the finalized topology. Comparative evaluations on benchmark planar and spatial trusses demonstrate the method’s superiority: it reduces NSAs by 22–79% compared to state-of-the-art approaches and achieves 0.04–0.7% lighter designs while eliminating up to 31% of redundant members. Results validate the framework as a paradigm shift in truss optimization, merging computational efficiency with structural innovation.
متن کامل [PDF 1436 kb]   (62 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1403/12/20 | پذیرش: 1404/2/25

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb