دوره 15، شماره 4 - ( 8-1404 )                   جلد 15 شماره 4 صفحات 525-511 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zakian P, Zakian P. PREDICTING THE NATURAL FREQUENCIES OF TRUSS DOMES UNDER UNCERTAINTY USING DEEP FEEDFORWARD NEURAL NETWORKS. IJOCE 2025; 15 (4) :511-525
URL: http://ijoce.iust.ac.ir/article-1-652-fa.html
PREDICTING THE NATURAL FREQUENCIES OF TRUSS DOMES UNDER UNCERTAINTY USING DEEP FEEDFORWARD NEURAL NETWORKS. عنوان نشریه. 1404; 15 (4) :511-525

URL: http://ijoce.iust.ac.ir/article-1-652-fa.html


چکیده:   (1084 مشاهده)
This study employs Monte Carlo simulation together with a deep feedforward neural network to predict the natural frequencies of truss domes under uncertainty. Material and/or geometric properties of these structures are modeled as random variables, and their influence on the natural frequencies is examined. Monte Carlo simulation is applied to perform stochastic eigenvalue analyses of the finite element models. To reduce computational cost, a deep neural network is trained to predict natural frequencies in place of repeated eigenvalue solves, accelerating the overall simulation. Bayesian optimization is used to tune the network hyperparameters. Numerical examples show that the proposed approach substantially improves computational efficiency and predictive accuracy compared with direct Monte Carlo simulation for domes with random inputs.
متن کامل [PDF 1283 kb]   (404 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: 1404/6/20 | پذیرش: 1404/8/11 | انتشار: 1404/8/14

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb