دوره 5، شماره 1 - ( 10-1393 )                   جلد 5 شماره 1 صفحات 115-103 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fattahi H. PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM. IJOCE 2015; 5 (1) :103-115
URL: http://ijoce.iust.ac.ir/article-1-201-fa.html
PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM. عنوان نشریه. 1393; 5 (1) :103-115

URL: http://ijoce.iust.ac.ir/article-1-201-fa.html


چکیده:   (16778 مشاهده)
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can solve the classification problem with small sampling, non-linearity and high dimension. However, the practicability of the SVM is influenced by the difficulty of selecting appropriate SVM parameters. In this study, the proposed hybrid harmony search (HS) with SVM was applied for the prediction of slope stability state, in which HS was used to determine the optimized free parameters of the SVM. A dataset that includes 55 data points was applied in current study, while 45 data points (80%) were used for constructing the model and the remainder data points (10 data points) were used for assessment of degree of accuracy and robustness. The results obtained indicate that the SVM-HS model can be used successfully for the prediction of slope stability state for circular failure.
متن کامل [PDF 891 kb]   (6538 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1393/10/27 | پذیرش: 1393/10/27 | انتشار: 1393/10/27

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb