دوره 6، شماره 1 - ( 10-1394 )                   جلد 6 شماره 1 صفحات 75-63 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fattahi H. A HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE. IJOCE 2016; 6 (1) :63-75
URL: http://ijoce.iust.ac.ir/article-1-238-fa.html
A HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE. عنوان نشریه. 1394; 6 (1) :63-75

URL: http://ijoce.iust.ac.ir/article-1-238-fa.html


چکیده:   (18052 مشاهده)
Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the SVR for determining the optimal value of its user-defined parameters. The optimization implementation by the ACO significantly improves the generalization ability of the SVR. In this research, the input data for the SF estimation consists of the values of geometrical and geotechnical input parameters. As an output, the model estimates the SF that can be modeled as a function approximation problem. A data set that includes 46 data points is applied in current study, while 32 data points are used for constructing the model, and the remainder data points (14 data points) are used for assessment of the degree of accuracy and robustness. The results obtained show that the hybrid SVR with ACO model can be used successfully for estimation of the SF.
متن کامل [PDF 616 kb]   (5558 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1394/7/13 | پذیرش: 1394/7/13 | انتشار: 1394/7/13

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb