دوره 12، شماره 2 - ( 2-1401 )                   جلد 12 شماره 2 صفحات 278-245 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kaveh A, Kamalinejad M, Biabani Hamedani K, Arzani H. QUANTUM VERSION OF TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM FOR OPTIMAL DESIGN OF CYCLIC SYMMETRIC STRUCTURES SUBJECT TO FREQUENCY CONSTRAINTS. International Journal of Optimization in Civil Engineering 2022; 12 (2) :245-278
URL: http://ijoce.iust.ac.ir/article-1-519-fa.html
QUANTUM VERSION OF TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM FOR OPTIMAL DESIGN OF CYCLIC SYMMETRIC STRUCTURES SUBJECT TO FREQUENCY CONSTRAINTS. عنوان نشریه. 1401; 12 (2) :245-278

URL: http://ijoce.iust.ac.ir/article-1-519-fa.html


چکیده:   (6049 مشاهده)
As a novel strategy, Quantum-behaved particles use uncertainty law and a distinct formulation obtained from solving the time-independent Schrodinger differential equation in the delta-potential-well function to update the solution candidates’ positions. In this case, the local attractors as potential solutions between the best solution and the others are introduced to explore the solution space. Also,  the difference between the average and another solution is established as a new step size. In the present paper, the quantum teacher phase is introduced to improve the performance of the current version of the teacher phase of the Teaching-Learning-Based Optimization algorithm (TLBO) by using the formulation obtained from solving the time-independent Schrodinger equation predicting the probable positions of optimal solutions. The results show that QTLBO, an acronym for the Quantum Teaching- Learning- Based Optimization, improves the stability and robustness of the TLBO by defining the quantum teacher phase. The two circulant space trusses with multiple frequency constraints are chosen to verify the quality and performance of QTLBO. Comparing the results obtained from the proposed algorithm with those of the standard version of the TLBO algorithm and other literature methods shows that QTLBO increases the chance of finding a better solution besides improving the statistical criteria compared to the current TLBO.
 
متن کامل [PDF 1660 kb]   (2486 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1401/1/21 | پذیرش: 1401/1/23 | انتشار: 1401/1/23

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb