دوره 13، شماره 3 - ( 4-1402 )                   جلد 13 شماره 3 صفحات 338-327 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini P, Kaveh A, Naghian A. THE USE OF ARTIFICIAL NEURAL NETWORKS AND METAHEURISTIC ALGORITHMS TO OPTIMIZE THE COMPRESSIVE STRENGTH OF CONCRETE. IJOCE 2023; 13 (3) :327-338
URL: http://ijoce.iust.ac.ir/article-1-558-fa.html
THE USE OF ARTIFICIAL NEURAL NETWORKS AND METAHEURISTIC ALGORITHMS TO OPTIMIZE THE COMPRESSIVE STRENGTH OF CONCRETE. عنوان نشریه. 1402; 13 (3) :327-338

URL: http://ijoce.iust.ac.ir/article-1-558-fa.html


چکیده:   (6755 مشاهده)
Cement, water, fine aggregates, and coarse aggregates are combined to produce concrete, which is the most common substance after water and has a distinctly compressive strength, the most important quality indicator. Hardened concrete's compressive strength is one of its most important properties. The compressive strength of concrete allows us to determine a wide range of concrete properties based on this characteristic, including tensile strength, shear strength, specific weight, durability, erosion resistance, sulfate resistance, and others. Increasing concrete's compressive strength solely by modifying aggregate characteristics and without affecting water and cement content is a challenge in the direction of concrete production. Artificial neural networks (ANNs) can be used to reduce laboratory work and predict concrete's compressive strength. Metaheuristic algorithms can be applied to ANN in an efficient and targeted manner, since they are intelligent systems capable of solving a wide range of problems. This study proposes new samples using the Taguchi method and tests them in the laboratory. Following the training of an ANN with the obtained results, the highest compressive strength is calculated using the EVPS and SA-EVPS algorithms.
 
متن کامل [PDF 396 kb]   (2856 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1402/1/29 | پذیرش: 1402/4/28 | انتشار: 1402/4/28

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb