دوره 14، شماره 2 - ( 12-1402 )                   جلد 14 شماره 2 صفحات 210-189 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roudak M A, Shayanfar M A, Farahani M, Badiezadeh S, Ardalan R. AN ENHANCED GENETIC ALGORITHM BASED ON THE INTRODUCTION OF FIXED STATION GROUPS AND A NEW VARIABLE MULTI-PARENT CROSSOVER TECHNIQUE. IJOCE 2024; 14 (2) :189-210
URL: http://ijoce.iust.ac.ir/article-1-582-fa.html
AN ENHANCED GENETIC ALGORITHM BASED ON THE INTRODUCTION OF FIXED STATION GROUPS AND A NEW VARIABLE MULTI-PARENT CROSSOVER TECHNIQUE. عنوان نشریه. 1402; 14 (2) :189-210

URL: http://ijoce.iust.ac.ir/article-1-582-fa.html


چکیده:   (3170 مشاهده)
Genetic algorithm is a robust meta-heuristic algorithm inspired by the theory of natural selection to solve various optimization problems. This study presents a method with the purpose of promoting the exploration and exploitation of genetic algorithm. Improvement in exploration ability is made by adjusting the initial population and adding a group of fixed stations. This modification increases the diversity among the solution population, which enables the algorithm to escape from local optimum and to converge to the global optimum even in fewer generations. On the other hand, to enhance the exploitation ability, increasing the number of selected parents is suggested and a corresponding crossover technique has been presented. In the proposed technique, the number of parents to generate offspring is variable during the process and it could be potentially more than two. The effectiveness of the modifications in the proposed method has been verified by examining several benchmark functions and engineering design problems.
 
متن کامل [PDF 1406 kb]   (772 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1403/1/23 | پذیرش: 1402/12/2 | انتشار: 1402/12/2

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb