School of Computing, Macquarie University, Sydney, Australia
Abstract: (1271 Views)
Structural optimization plays a critical role in improving the efficiency, cost-effectiveness, and sustainability of engineering designs. This paper presents a comparative study of single-objective and multi-objective optimization in the structural design process. Single-objective problems focus on optimizing just one objective, such as minimizing weight or cost, while other important aspects are treated as constraints like deflections and strength requirements. Multi-objective optimization addresses multiple conflicting objectives, such as balancing cost, with displacement treated as a secondary objective and strength requirements defined as constraints within the given limits. Both optimization approaches are carried out using Chaos Game Optimization (CGO). While single-objective optimization produces a definitive optimal solution that can be used directly in the final design, multi-objective optimization results in a set of trade-off solutions (Pareto front), requiring a decision-making process based on design codes and practical criteria to select the most appropriate design. Through a real-world case study, this research will assess the performance of both optimization strategies, providing insights into their suitability for modern structural engineering challenges.
Type of Study:
Research |
Subject:
Optimal design Received: 2024/09/9 | Accepted: 2024/10/13