دوره 14، شماره 4 - ( 7-1403 )                   جلد 14 شماره 4 صفحات 645-629 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassan Radhi Alhilali A, Gholizadeh S, Tariverdilo S. SEISMIC CONFIDENCE LEVELS AND COLLAPSE CAPACITY ASSESSMENT OF STEEL MOMENT RESISTING FRAMES USING NEURAL NETWORKS. IJOCE 2024; 14 (4) :629-645
URL: http://ijoce.iust.ac.ir/article-1-612-fa.html
SEISMIC CONFIDENCE LEVELS AND COLLAPSE CAPACITY ASSESSMENT OF STEEL MOMENT RESISTING FRAMES USING NEURAL NETWORKS. عنوان نشریه. 1403; 14 (4) :629-645

URL: http://ijoce.iust.ac.ir/article-1-612-fa.html


چکیده:   (1709 مشاهده)
This paper employs neural network models to assess the seismic confidence levels at various performance levels, as well as the seismic collapse capacity of steel moment-resisting frame structures. Two types of shallow neural network models including back-propagation (BP) and radial basis (RB) models are utilized to evaluate the seismic responses. Both neural network models consist of a single hidden layer with a different number of neurons. The prediction accuracy of the trained neural network models is compared using two illustrative examples of 6- and 12-story steel moment-resisting frames. The obtained numerical results indicate that the BP model outperforms the RB model in predicting seismic responses.
متن کامل [PDF 1611 kb]   (1288 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: 1403/8/21 | پذیرش: 1403/10/5 | انتشار: 1403/7/25

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb