دوره 15، شماره 1 - ( 11-1403 )                   جلد 15 شماره 1 صفحات 56-39 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahrouzi M, Rashidi-Moghaddam M. A COHERENCY METRIC TO COMPARE OPTIMALLY CLUSTERED SEISMIC DATA. IJOCE 2025; 15 (1) :39-56
URL: http://ijoce.iust.ac.ir/article-1-621-fa.html
A COHERENCY METRIC TO COMPARE OPTIMALLY CLUSTERED SEISMIC DATA. عنوان نشریه. 1403; 15 (1) :39-56

URL: http://ijoce.iust.ac.ir/article-1-621-fa.html


چکیده:   (845 مشاهده)
Clustering is a well-known solution to deal with complex database features as an unsupervised machine learning technique. One of its practical applications is the selection of non-similar earthquakes for consequent analysis of structural models. In the present work, appropriate clustering of seismic data is searched via optimization. Silhouette value is penalized and used to define the performance objective. A stochastic search algorithm is combined with a greedy search to solve the problem for distinct sets of near–field and far-field ground motion records. The concept of coherency is borrowed from optics to propose a coherency metric for earthquake signals before and after being filtered by structural models. It is then evaluated for various cases of structural response-to-record and response-to-response comparisons. According to the results the proposed coherency detection procedure performs well; confirmed by distinguished structural response spectra between different clusters.
متن کامل [PDF 884 kb]   (437 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Applications
دریافت: 1403/10/3 | پذیرش: 1403/11/7

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb